Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Transl Neurodegener ; 13(1): 11, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378800

RESUMO

BACKGROUND: It is now realized that Parkinson's disease (PD) pathology extends beyond the substantia nigra, affecting both central and peripheral nervous systems, and exhibits a variety of non-motor symptoms often preceding motor features. Neuroinflammation induced by activated microglia and astrocytes is thought to underlie these manifestations. α-Synuclein aggregation has been linked with sustained neuroinflammation in PD, aggravating neuronal degeneration; however, there is still a lack of critical information about the structural identity of the α-synuclein conformers that activate microglia and/or astrocytes and the molecular pathways involved. METHODS: To investigate the role of α-synuclein conformers in the development and maintenance of neuroinflammation, we used primary quiescent microglia and astrocytes, post-mortem brain tissues from PD patients and A53T α-synuclein transgenic mice that recapitulate key features of PD-related inflammatory responses in the absence of cell death, i.e., increased levels of pro-inflammatory cytokines and complement proteins. Biochemical and -omics techniques including RNAseq and secretomic analyses, combined with 3D reconstruction of individual astrocytes and live calcium imaging, were used to uncover the molecular mechanisms underlying glial responses in the presence of α-synuclein oligomers in vivo and in vitro. RESULTS: We found that the presence of SDS-resistant hyper-phosphorylated α-synuclein oligomers, but not monomers, was correlated with sustained inflammatory responses, such as elevated levels of endogenous antibodies and cytokines and microglial activation. Similar oligomeric α-synuclein species were found in post-mortem human brain samples of PD patients but not control individuals. Detailed analysis revealed a decrease in Iba1Low/CD68Low microglia and robust alterations in astrocyte number and morphology including process retraction. Our data indicated an activation of the p38/ATF2 signaling pathway mostly in microglia and a sustained induction of the NF-κB pathway in astrocytes of A53T mice. The sustained NF-κB activity triggered the upregulation of astrocytic T-type Cav3.2 Ca2+ channels, altering the astrocytic secretome and promoting the secretion of IGFBPL1, an IGF-1 binding protein with anti-inflammatory and neuroprotective potential. CONCLUSIONS: Our work supports a causative link between the neuron-produced α-synuclein oligomers and sustained neuroinflammation in vivo and maps the signaling pathways that are stimulated in microglia and astrocytes. It also highlights the recruitment of astrocytic Cav3.2 channels as a potential neuroprotective mediator against the α-synuclein-induced neuroinflammation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , NF-kappa B/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Sinalização do Cálcio , Doença de Parkinson/metabolismo , Camundongos Transgênicos , Citocinas
2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338666

RESUMO

Diabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD. Data were extracted from a previously published quantitative-mass-spectrometry-based proteomics analysis of kidney glomeruli of 2 (early DKD) and 4 months (moderately advanced DKD)-old Ins2Akita mice and their controls A Spearman rho correlation analysis of complement- versus inflammation- and fibrosis-related protein expression was performed. A cross-omics validation of the correlation analyses' results was performed using public-domain transcriptomics datasets (Nephroseq). Tissue sections from 43 patients with DKD were analyzed using immunofluorescence. Among the differentially expressed proteins, the complement cascade proteins C3, C4B, and IGHM were significantly increased in both early and later stages of DKD. Inflammation-related proteins were mainly upregulated in early DKD, and fibrotic proteins were induced in moderately advanced stages of DKD. The abundance of complement proteins with fibrosis- and inflammation-related proteins was mostly positively correlated in early stages of DKD. This was confirmed in seven additional human and mouse transcriptomics DKD datasets. Moreover, C3 and IGHM mRNA levels were found to be negatively correlated with the estimated glomerular filtration rate (range for C3 rs = -0.58 to -0.842 and range for IGHM rs = -0.6 to -0.74) in these datasets. Immunohistology of human kidney biopsies revealed that C3, C1q, and IGM proteins were induced in patients with DKD and were correlated with fibrosis and inflammation. Our study shows for the first time the potential activation of the complement cascade associated with inflammation-mediated kidney fibrosis in the Ins2Akita T1D mouse model. Our findings could provide new perspectives for the treatment of early DKD as well as support the use of Ins2Akita T1D in pre-clinical studies.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Fibrose , Rim/metabolismo
3.
Cell Rep ; 42(12): 113561, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096056

RESUMO

Quiescence is a common cellular state, required for stem cell maintenance and microorganismal survival under stress conditions or starvation. However, the mechanisms promoting quiescence maintenance remain poorly known. Plasma membrane components segregate into distinct microdomains, yet the role of this compartmentalization in quiescence remains unexplored. Here, we show that flavodoxin-like proteins (FLPs), ubiquinone reductases of the yeast eisosome membrane compartment, protect quiescent cells from lipid peroxidation and ferroptosis. Eisosomes and FLPs expand specifically in respiratory-active quiescent cells, and mutants lacking either show accelerated aging and defective quiescence maintenance and accumulate peroxidized phospholipids with monounsaturated or polyunsaturated fatty acids (PUFAs). FLPs are essential for the extramitochondrial regeneration of the lipophilic antioxidant ubiquinol. FLPs, alongside the Gpx1/2/3 glutathione peroxidases, prevent iron-driven, PUFA-dependent ferroptotic cell death. Our work describes ferroptosis-protective mechanisms in yeast and introduces plasma membrane compartmentalization as an important factor in the long-term survival of quiescent cells.


Assuntos
Ferroptose , Saccharomyces cerevisiae , Peroxidação de Lipídeos , Antioxidantes , Ácidos Graxos Insaturados
4.
Funct Integr Genomics ; 23(4): 341, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987851

RESUMO

tRNA fragments (tRFs) are small non-coding RNAs generated through specific cleavage of tRNAs and involved in various biological processes. Among the different types of tRFs, the 3'-tRFs have attracted scientific interest due to their regulatory role in gene expression. In this study, we investigated the role of 3'-tRF-CysGCA, a tRF deriving from cleavage in the T-loop of tRNACysGCA, in the regulation of gene expression in HEK-293 cells. Previous studies have shown that 3'-tRF-CysGCA is incorporated into the RISC complex and interacts with Argonaute proteins, suggesting its involvement in the regulation of gene expression. However, the general role and effect of the deregulation of 3'-tRF-CysGCA levels in human cells have not been investigated so far. To fill this gap, we stably overexpressed 3'-tRF-CysGCA in HEK-293 cells and performed transcriptomic and proteomic analyses. Moreover, we validated the interaction of this tRF with putative targets, the levels of which were found to be affected by 3'-tRF-CysGCA overexpression. Lastly, we investigated the implication of 3'-tRF-CysGCA in various pathways using extensive bioinformatics analysis. Our results indicate that 3'-tRF-CysGCA overexpression led to changes in the global gene expression profile of HEK-293 cells and that multiple cellular pathways were affected by the deregulation of the levels of this tRF. Additionally, we demonstrated that 3'-tRF-CysGCA directly interacts with thymopoietin (TMPO) transcript variant 1 (also known as LAP2α), leading to modulation of its levels. In conclusion, our findings suggest that 3'-tRF-CysGCA plays a significant role in gene expression regulation and highlight the importance of this tRF in cellular processes.


Assuntos
Proteômica , RNA de Transferência , Humanos , Células HEK293 , RNA de Transferência/genética , Regulação da Expressão Gênica
5.
iScience ; 26(11): 108100, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915594

RESUMO

Liver transplantation is the gold-standard therapy for acute hepatic failure (AHF) with limitations related to organ shortage and life-long immunosuppressive therapy. Cell therapy emerges as a promising alternative to transplantation. We have previously shown that IL-10 and Annexin-A1 released by amniotic fluid human mesenchymal stromal cells (AF-MSCs) and their hepatocyte progenitor-like (HPL) or hepatocyte-like (HPL) cells induce liver repair and downregulate systemic inflammation in a CCl4-AHF mouse model. Herein, we demonstrate that exosomes (EXO) derived from these cells improve liver phenotype in CCl4-induced mice and promote oval cell proliferation. LC-MS/MS proteomic analysis identified MEFG-8 in EXO cargo that facilitates rescue of AHF by suppressing PI3K signaling. Administration of recombinant MFGE-8 protein also reduced liver damage in CCl4-induced mice. Clinically, MEFG-8 expression was decreased in liver biopsies from AHF patients. Collectively, our study provides proof-of-concept for an innovative, cell-free, less immunogenic, and non-toxic alternative strategy for AHF.

6.
Mass Spectrom Rev ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534389

RESUMO

We are approaching the third decade since the establishment of the very first proteomics repositories back in the mid-'00s. New experimental approaches and technologies continuously enrich the field while producing vast amounts of mass spectrometry data. Together with initiatives to establish standard terminology and file formats, proteomics is rapidly transforming into a mature component of systems biology. Here we describe the ProteomeXchange consortium repositories. We specifically search, collect and evaluate public human tissue datasets (categorized as "complete" by the repository) submitted in 2015-2022, to both map the existing information and assess the data set reusability. Human tissue data are variably represented in the repositories reviewed, ranging between 10% and 25% of the total data submitted, with cancers being the most represented, followed by neuronal and cardiovascular diseases. About half of the retrieved data sets were found to lack annotations or metadata necessary to directly replicate the analysis. This poses a rough challenge to data reusability and highlights the need to increase awareness of the mage-tab file format for metadata in the community. Overall, proteomics repositories have evolved greatly over the past 7 years, as they have grown in size and become equipped with various powerful applications and tools that enable data searching and analytical tasks. However, to make the most of this potential, priority must be given to finding ways to secure detailed metadata for each submission, which is likely the next major milestone for proteomics repositories.

7.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982475

RESUMO

Chronic kidney disease (CKD) is prevalent in 10% of world's adult population. The role of protein glycosylation in causal mechanisms of CKD progression is largely unknown. The aim of this study was to identify urinary O-linked glycopeptides in association to CKD for better characterization of CKD molecular manifestations. Urine samples from eight CKD and two healthy subjects were analyzed by CE-MS/MS and glycopeptides were identified by a specific software followed by manual inspection of the spectra. Distribution of the identified glycopeptides and their correlation with Age, eGFR and Albuminuria were evaluated in 3810 existing datasets. In total, 17 O-linked glycopeptides from 7 different proteins were identified, derived primarily from Insulin-like growth factor-II (IGF2). Glycosylation occurred at the surface exposed IGF2 Threonine 96 position. Three glycopeptides (DVStPPTVLPDNFPRYPVGKF, DVStPPTVLPDNFPRYPVG and DVStPPTVLPDNFPRYP) exhibited positive correlation with Age. The IGF2 glycopeptide (tPPTVLPDNFPRYP) showed a strong negative association with eGFR. These results suggest that with aging and deteriorating kidney function, alterations in IGF2 proteoforms take place, which may reflect changes in mature IGF2 protein. Further experiments corroborated this hypothesis as IGF2 increased plasma levels were observed in CKD patients. Protease predictions, considering also available transcriptomics data, suggest activation of cathepsin S with CKD, meriting further investigation.


Assuntos
Glicopeptídeos , Insuficiência Renal Crônica , Espectrometria de Massas em Tandem , Adulto , Humanos , Envelhecimento , Glicopeptídeos/química , Glicosilação , Fator de Crescimento Insulin-Like II , Software , Espectrometria de Massas em Tandem/métodos , Insuficiência Renal Crônica/metabolismo
8.
Commun Biol ; 6(1): 265, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914713

RESUMO

Atherosclerotic plaque rupture leading to myocardial infarction is a major global health burden. Applying the tandem stenosis (TS) mouse model, which distinctively exhibits the characteristics of human plaque instability/rupture, we use quantitative proteomics to understand and directly compare unstable and stable atherosclerosis. Our data highlight the disparate natures and define unique protein signatures of unstable and stable atherosclerosis. Key proteins and pathway networks are identified such as the innate immune system, and neutrophil degranulation. The latter includes calprotectin S100A8/A9, which we validate in mouse and human unstable plaques, and we demonstrate the plaque-stabilizing effects of its inhibition. Overall, we provide critical insights into the unique proteomic landscape of unstable atherosclerosis (as distinct from stable atherosclerosis and vascular tissue). We further establish the TS model as a reliable preclinical tool for the discovery and testing of plaque-stabilizing drugs. Finally, we provide a knowledge resource defining unstable atherosclerosis that will facilitate the identification and validation of long-sought-after therapeutic targets and drugs for plaque stabilization.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Proteômica , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Modelos Animais de Doenças
9.
Cancers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831508

RESUMO

(1) Background: Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Wide application of prostate specific antigen test has historically led to over-treatment, starting from excessive biopsies. Risk calculators based on molecular and clinical variables can be of value to determine the risk of PCa and as such, reduce unnecessary and invasive biopsies. Urinary molecular studies have been mostly focusing on sampling after initial intervention (digital rectal examination and/or prostate massage). (2) Methods: Building on previous proteomics studies, in this manuscript, we aimed at developing a biomarker model for PCa detection based on urine sampling without prior intervention. Capillary electrophoresis coupled to mass spectrometry was applied to acquire proteomics profiles from 970 patients from two different clinical centers. (3) Results: A case-control comparison was performed in a training set of 413 patients and 181 significant peptides were subsequently combined by a support vector machine algorithm. Independent validation was initially performed in 272 negative for PCa and 138 biopsy-confirmed PCa, resulting in an AUC of 0.81, outperforming current standards, while a second validation phase included 147 PCa patients. (4) Conclusions: This multi-dimensional biomarker model holds promise to improve the current diagnosis of PCa, by guiding invasive biopsies.

10.
Hemasphere ; 6(11): e791, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36285072

RESUMO

Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.

11.
Biomedicines ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140166

RESUMO

Molar incisor hypomineralization is a complex developmental enamel defect that affects the permanent dentition of children with significant functional and aesthetic implications. Saliva is an ideal diagnostic tool and ensures patients' compliance by diminishing the discomfort especially in pediatric population. Lately, salivary proteome analysis has progressively evolved in various biomedical disciplines. As changes in saliva composition are associated with oral diseases, it is reasonable to assume that the saliva proteome of MIH-affected children might be altered compared to healthy children. This study analyzed the human and microbial salivary proteome in children with MIH in order to identify salivary markers indicative of the pathology. The conducted proteomic analysis generated a comprehensive dataset comprising a total of 1515 high confidence identifications and revealed a clear discrimination between the two groups. Statistical comparison identified 142 differentially expressed proteins, while the pathway analysis indicated deregulation of inflammation, immune response mechanisms, and defense response to bacteria in MIH patients. Bacterial proteome analysis showed a lower diversity for the microbial species, which highlights the dysbiotic environment established in the MIH pathology.

12.
Cancers (Basel) ; 14(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954429

RESUMO

Prostate cancer (PCa) is the second most common cancer in men. Diagnosis and risk assessment are widely based on serum Prostate Specific Antigen (PSA) and biopsy, which might not represent the exact degree of PCa risk. Towards the discovery of biomarkers for better patient stratification, we performed proteomic analysis of Formalin Fixed Paraffin Embedded (FFPE) prostate tissue specimens using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Comparative analysis of 86 PCa samples among grade groups 1-5 identified 301 significantly altered proteins. Additional analysis based on biochemical recurrence (BCR; BCR+ n = 14, BCR- n = 51) revealed 197 significantly altered proteins that indicate disease persistence. Filtering the overlapping proteins of these analyses, seven proteins (NPM1, UQCRH, HSPA9, MRPL3, VCAN, SERBP1, HSPE1) had increased expression in advanced grades and in BCR+/BCR- and may play a critical role in PCa aggressiveness. Notably, all seven proteins were significantly associated with progression in Prostate Cancer Transcriptome Atles (PCTA) and NPM1NPM1, UQCRH, and VCAN were further validated in The Cancer Genome Atlas (TCGA), where they were upregulated in BCR+/BCR-. UQCRH levels were also associated with poorer 5-year survival. Our study provides valuable insights into the key regulators of PCa progression and aggressiveness. The seven selected proteins could be used for the development of risk assessment tools.

13.
Viruses ; 14(8)2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-36016316

RESUMO

Hepatitis C virus is the major cause of chronic liver diseases and the only cytoplasmic RNA virus known to be oncogenic in humans. The viral genome gives rise to ten mature proteins and to additional proteins, which are the products of alternative translation initiation mechanisms. A protein-known as ARFP (alternative reading frame protein) or Core+1 protein-is synthesized by an open reading frame overlapping the HCV Core coding region in the (+1) frame of genotype 1a. Almost 20 years after its discovery, we still know little of the biological role of the ARFP/Core+1 protein. Here, our differential proteomic analysis of stable hepatoma cell lines expressing the Core+1/Long isoform of HCV-1a relates the expression of the Core+1/Long isoform with the progression of the pathology of HCV liver disease to cancer.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Hepacivirus/genética , Hepacivirus/metabolismo , Antígenos da Hepatite C , Humanos , Isoformas de Proteínas/metabolismo , Proteômica , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
14.
Basic Res Cardiol ; 117(1): 27, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581445

RESUMO

Major clinical trials with sodium glucose co-transporter-2 inhibitors (SGLT-2i) exhibit protective effects against heart failure events, whereas inconsistencies regarding the cardiovascular death outcomes are observed. Therefore, we aimed to compare the selective SGLT-2i empagliflozin (EMPA), dapagliflozin (DAPA) and ertugliflozin (ERTU) in terms of infarct size (IS) reduction and to reveal the cardioprotective mechanism in healthy non-diabetic mice. C57BL/6 mice randomly received vehicle, EMPA (10 mg/kg/day) and DAPA or ERTU orally at the stoichiometrically equivalent dose (SED) for 7 days. 24 h-glucose urinary excretion was determined to verify SGLT-2 inhibition. IS of the region at risk was measured after 30 min ischemia (I), and 120 min reperfusion (R). In a second series, the ischemic myocardium was collected (10th min of R) for shotgun proteomics and evaluation of the cardioprotective signaling. In a third series, we evaluated the oxidative phosphorylation capacity (OXPHOS) and the mitochondrial fatty acid oxidation capacity by measuring the respiratory rates. Finally, Stattic, the STAT-3 inhibitor and wortmannin were administered in both EMPA and DAPA groups to establish causal relationships in the mechanism of protection. EMPA, DAPA and ERTU at the SED led to similar SGLT-2 inhibition as inferred by the significant increase in glucose excretion. EMPA and DAPA but not ERTU reduced IS. EMPA preserved mitochondrial functionality in complex I&II linked oxidative phosphorylation. EMPA and DAPA treatment led to NF-kB, RISK, STAT-3 activation and the downstream apoptosis reduction coinciding with IS reduction. Stattic and wortmannin attenuated the cardioprotection afforded by EMPA and DAPA. Among several upstream mediators, fibroblast growth factor-2 (FGF-2) and caveolin-3 were increased by EMPA and DAPA treatment. ERTU reduced IS only when given at the double dose of the SED (20 mg/kg/day). Short-term EMPA and DAPA, but not ERTU administration at the SED reduce IS in healthy non-diabetic mice. Cardioprotection is not correlated to SGLT-2 inhibition, is STAT-3 and PI3K dependent and associated with increased FGF-2 and Cav-3 expression.


Assuntos
Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos , Glucose , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Wortmanina
15.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563580

RESUMO

DNA damage-inducible transcript 4 (DDIT4) is a ubiquitous protein whose expression is transiently increased in response to various stressors. Chronic expression has been linked to various pathologies, including neurodegeneration, inflammation, and cancer. DDIT4 is best recognized for repressing mTORC1, an essential protein complex activated by nutrients and hormones. Accordingly, DDIT4 regulates metabolism, oxidative stress, hypoxic survival, and apoptosis. Despite these well-defined biological functions, little is known about its interacting partners and their unique molecular functions. Here, fusing an enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to DDIT4 combined with mass spectrometry, the proteins in the immediate vicinity of DDIT4 in either unstressed or acute stress conditions were identified in situ. The context-dependent interacting proteomes were quantitatively but not functionally distinct. DDIT4 had twice the number of interaction partners during acute stress compared to unstressed conditions, and while the two protein lists had minimal overlap in terms of identity, the proteins' molecular function and classification were essentially identical. Moonlighting keratins and ribosomal proteins dominated the proteomes in both unstressed and stressed conditions, with many of their members having established non-canonical and indispensable roles during stress. Multiple keratins regulate mTORC1 signaling via the recruitment of 14-3-3 proteins, whereas ribosomal proteins control translation, cell cycle progression, DNA repair, and death by sequestering critical proteins. In summary, two potentially distinct mechanisms of DDIT4 molecular function have been identified, paving the way for additional research to confirm and consolidate these findings.


Assuntos
Proteoma , Proteínas Ribossômicas , Ascorbato Peroxidases , Queratinas , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteoma/metabolismo
16.
Cancers (Basel) ; 14(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626146

RESUMO

Despite advancements in molecular classification, tumor stage and grade still remain the most relevant prognosticators used by clinicians to decide on patient management. Here, we leverage publicly available data to characterize bladder cancer (BLCA)'s stage biology based on increased sample sizes, identify potential therapeutic targets, and extract putative biomarkers. A total of 1135 primary BLCA transcriptomes from 12 microarray studies were compiled in a meta-cohort and analyzed for monotonal alterations in pathway activities, gene expression, and co-expression patterns with increasing stage (Ta-T1-T2-T3-T4), starting from the non-malignant tumor-adjacent urothelium. The TCGA-2017 and IMvigor-210 RNA-Seq data were used to validate our findings. Wnt, MTORC1 signaling, and MYC activity were monotonically increased with increasing stage, while an opposite trend was detected for the catabolism of fatty acids, circadian clock genes, and the metabolism of heme. Co-expression network analysis highlighted stage- and cell-type-specific genes of potentially synergistic therapeutic value. An eight-gene signature, consisting of the genes AKAP7, ANLN, CBX7, CDC14B, ENO1, GTPBP4, MED19, and ZFP2, had independent prognostic value in both the discovery and validation sets. This novel eight-gene signature may increase the granularity of current risk-to-progression estimators.

17.
Methods Mol Biol ; 2419: 629-644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237993

RESUMO

Atherosclerosis development and progression have been linked to vascular reactive oxygen species (ROS). Plaque formation and especially instability, frequently resulting in acute coronary syndromes, have been linked to cell apoptosis and senescence, but also mainly to increased cellular oxidative stress. ROS are characterized by their high chemical reactivity and a resulting short half-life. This high reactivity usually involves reversible and/or irreversible protein modifications and specifically the covalent oxidative modification of cysteine residues. The latter can be used for the identification of protein-chemical footprints, leading to indirect monitoring of ROS. Proteomics and especially liquid chromatography tandem mass spectrometry (LC-MS/MS) approaches have emerged as a powerful tool to identify such protein modifications in biological samples (e.g., body fluids, tissues, cells). Application of a well-established quantitative thiol trapping technique termed OxICAT enables the detection and quantification of oxidative thiol modifications of thousands of proteins in a single experiment. In this chapter, a step-by-step guide for the redox proteomics analysis of atherosclerotic aortas, by utilizing the OxICAT method, as optimized by our group is provided.


Assuntos
Aterosclerose , Proteômica , Aorta/metabolismo , Cromatografia Líquida , Cisteína/química , Humanos , Oxirredução , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
18.
Biomedicines ; 10(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35203426

RESUMO

BACKGROUND: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis. METHODS: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression. RESULTS: LC-MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD). The abundance of detected proteins was defined. Pathway analysis of differentially expressed proteins in the early and late DKD versus the respective controls predicted dysregulation in DKD hallmarks (peroxisomal lipid metabolism and ß-oxidation), supporting the functional relevance of the findings. Comparing the observed protein changes in early and late DKD, the consistent upregulation of 21 and downregulation of 18 proteins was detected. Among these were downregulated peroxisomal and upregulated mitochondrial proteins. Tissue sections from 16 DKD patients were analyzed by IHC confirming our results. CONCLUSION: Our study shows an extensive differential expression of peroxisomal proteins in the early stages of DKD that persists regardless of the disease severity, providing new perspectives and potential markers of diabetic kidney dysfunction.

19.
Biology (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205152

RESUMO

TIA1 is a broadly expressed DNA/RNA binding protein that regulates multiple aspects of RNA metabolism. It is best known for its role in stress granule assembly during the cellular stress response. Three RNA recognition motifs mediate TIA1 functions along with a prion-like domain that supports multivalent protein-protein interactions that are yet poorly characterized. Here, by fusing the enhanced ascorbate peroxidase 2 (APEX2) biotin-labeling enzyme to TIA1 combined with mass spectrometry, the proteins in the immediate vicinity of TIA1 were defined in situ. Eighty-six and 203 protein partners, mostly associated with ribonucleoprotein complexes, were identified in unstressed control and acute stress conditions, respectively. Remarkably, the repertoire of TIA1 protein partners was highly dissimilar between the two cellular states. Under unstressed control conditions, the biological processes associated with the TIA1 interactome were enriched for cytosolic ontologies related to mRNA metabolism, such as translation initiation, nucleocytoplasmic transport, and RNA catabolism, while the protein identities were primarily represented by RNA binding proteins, ribosomal subunits, and eicosanoid regulators. Under acute stress, TIA1-labeled partners displayed a broader subcellular distribution that included the chromosomes and mitochondria. The enriched biological processes included splicing, translation, and protein synthesis regulation, while the molecular function of the proteins was enriched for RNA binding activity, ribosomal subunits, DNA double-strand break repair, and amide metabolism. Altogether, these data highlight the TIA1 spatial environment with its different partners in diverse cellular states and pave the way to dissect TIA1 role in these processes.

20.
Biomedicines ; 10(1)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35052863

RESUMO

Significant inter-individual variation in terms of susceptibility to several stress-related disorders, such as myocardial infarction and Alzheimer's disease, and therapeutic response has been observed among healthy subjects. The molecular features responsible for this phenomenon have not been fully elucidated. Proteomics, in association with bioinformatics analysis, offer a comprehensive description of molecular phenotypes with clear links to human disease pathophysiology. The aim of this study was to conduct a comparative plasma proteomics analysis of glucocorticoid resistant and glucocorticoid sensitive healthy subjects and provide clues of the underlying physiological differences. For this purpose, 101 healthy volunteers were given a very low dose (0.25 mg) of dexamethasone at midnight, and were stratified into the 10% most glucocorticoid sensitive (S) (n = 11) and 10% most glucocorticoid resistant (R) (n = 11) according to the 08:00 h serum cortisol concentrations determined the following morning. One month following the very-low dose dexamethasone suppression test, DNA and plasma samples were collected from the 22 selected individuals. Sequencing analysis did not reveal any genetic defects in the human glucocorticoid receptor (NR3C1) gene. To investigate the proteomic profile of plasma samples, we used Liquid Chromatography-Mass Spectrometry (LC-MS/MS) and found 110 up-regulated and 66 down-regulated proteins in the S compared to the R group. The majority of the up-regulated proteins in the S group were implicated in platelet activation. To predict response to cortisol prior to administration, a random forest classifier was developed by using the proteomics data in order to distinguish S from R individuals. Apolipoprotein A4 (APOA4) and gelsolin (GSN) were the most important variables in the classification, and warrant further investigation. Our results indicate that a proteomics signature may differentiate the S from the R healthy subjects, and may be useful in clinical practice. In addition, it may provide clues of the underlying molecular mechanisms of the chronic stress-related diseases, including myocardial infarction and Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA