Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6284, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805510

RESUMO

Plants are challenged by drastically different osmotic environments during growth and development. Adaptation to these environments often involves mechanosensitive ion channels that can detect and respond to mechanical force. In the model plant Arabidopsis thaliana, the mechanosensitive channel MSL10 plays a crucial role in hypo-osmotic shock adaptation and programmed cell death induction, but the molecular basis of channel function remains poorly understood. Here, we report a structural and electrophysiological analysis of MSL10. The cryo-electron microscopy structures reveal a distinct heptameric channel assembly. Structures of the wild-type channel in detergent and lipid environments, and in the absence of membrane tension, capture an open conformation. Furthermore, structural analysis of a non-conductive mutant channel demonstrates that reorientation of phenylalanine side chains alone, without main chain rearrangements, may generate the hydrophobic gate. Together, these results reveal a distinct gating mechanism and advance our understanding of mechanotransduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mecanotransdução Celular/fisiologia , Microscopia Crioeletrônica , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo
2.
Nat Commun ; 14(1): 4538, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507406

RESUMO

Inwardly rectifying potassium (Kir) channels open at the 'helix bundle crossing' (HBC), formed by the M2 helices at the cytoplasmic end of the transmembrane pore. Introduced negative charges at the HBC (G178D) in Kir2.2 channels forces opening, allowing pore wetting and free movement of permeant ions between the cytoplasm and the inner cavity. Single-channel recordings reveal striking, pH-dependent, subconductance behaviors in G178D (or G178E and equivalent Kir2.1[G177E]) mutant channels, with well-resolved non-cooperative subconductance levels. Decreasing cytoplasmic pH shifts the probability towards lower conductance levels. Molecular dynamics simulations show how protonation of Kir2.2[G178D], or the D173 pore-lining residues, changes solvation, K+ ion occupancy, and K+ conductance. Ion channel gating and conductance are classically understood as separate processes. The present data reveal how individual protonation events change the electrostatic microenvironment of the pore, resulting in step-wise alterations of ion pooling, and hence conductance, that appear as 'gated' substates.


Assuntos
Simulação de Dinâmica Molecular , Oócitos , Íons , Citoplasma
3.
J Gen Physiol ; 155(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912700

RESUMO

The Vanilloid thermoTRP (TRPV1-4) subfamily of TRP channels are involved in thermoregulation, osmoregulation, itch and pain perception, (neuro)inflammation and immune response, and tight control of channel activity is required for perception of noxious stimuli and pain. Here we report voltage-dependent modulation of each of human TRPV1, 3, and 4 by the endogenous intracellular polyamine spermine. As in inward rectifier K channels, currents are blocked in a strongly voltage-dependent manner, but, as in cyclic nucleotide-gated channels, the blockade is substantially reduced at more positive voltages, with maximal blockade in the vicinity of zero voltage. A kinetic model of inhibition suggests two independent spermine binding sites with different affinities as well as different degrees of polyamine permeability in TRPV1, 3, and 4. Given that block and relief occur over the physiological voltage range of action potentials, voltage-dependent polyamine block may be a potent modulator of TRPV-dependent excitability in multiple cell types.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Espermina , Humanos , Espermina/farmacologia , Espermina/metabolismo , Poliaminas/farmacologia , Poliaminas/metabolismo , Potenciais de Ação/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
4.
Res Sq ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993294

RESUMO

Inwardly rectifying potassium (Kir) channels play a critical role in stabilizing the membrane potential, thus controlling numerous physiological phenomena in multiple tissues. Channel conductance is activated by cytoplasmic modulators that open the channel at the 'helix bundle crossing' (HBC), formed by the coming together of the M2 helices from each of the four subunits, at the cytoplasmic end of the transmembrane pore. We introduced a negative charge at the bundle crossing region (G178D) in classical inward rectifier Kir2.2 channel subunits that forces channel opening, allowing pore wetting and free movement of permeant ions between the cytoplasm and the inner cavity. Single-channel recordings reveal a striking pH-dependent subconductance behavior in G178D (or G178E and equivalent Kir2.1[G177E]) mutant channels that reflects individual subunit events. These subconductance levels are well resolved temporally and occur independently, with no evidence of cooperativity. Decreasing cytoplasmic pH shifts the probability towards lower conductance levels, and molecular dynamics simulations show how protonation of Kir2.2[G178D] and, additionally, the rectification controller (D173) pore-lining residues leads to changes in pore solvation, K+ ion occupancy, and ultimately K+ conductance. While subconductance gating has long been discussed, resolution and explanation have been lacking. The present data reveals how individual protonation events change the electrostatic microenvironment of the pore, resulting in distinct, uncoordinated, and relatively long-lasting conductance states, which depend on levels of ion pooling in the pore and the maintenance of pore wetting. Gating and conductance are classically understood as separate processes in ion channels. The remarkable sub-state gating behavior of these channels reveals how intimately connected 'gating' and 'conductance' are in reality.

5.
Elife ; 122023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810131

RESUMO

Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterior HOX genes and down-regulated antioxidant genes CAT and GSTA1 throughout chondrogenesis. BMP4 treatment up-regulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteocondrodisplasias , Humanos , Condrócitos , Canais de Cátion TRPV/genética , Osteocondrodisplasias/genética , Diferenciação Celular , Mutação , Hipertrofia , Condrogênese/genética
6.
Nat Commun ; 13(1): 6904, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371466

RESUMO

Mechanosensitive channels of small conductance, found in many living organisms, open under elevated membrane tension and thus play crucial roles in biological response to mechanical stress. Amongst these channels, MscK is unique in that its activation also requires external potassium ions. To better understand this dual gating mechanism by force and ligand, we elucidate distinct structures of MscK along the gating cycle using cryo-electron microscopy. The heptameric channel comprises three layers: a cytoplasmic domain, a periplasmic gating ring, and a markedly curved transmembrane domain that flattens and expands upon channel opening, which is accompanied by dilation of the periplasmic ring. Furthermore, our results support a potentially unifying mechanotransduction mechanism in ion channels depicted as flattening and expansion of the transmembrane domain.


Assuntos
Ativação do Canal Iônico , Canais de Potássio , Canais de Potássio/metabolismo , Mecanotransdução Celular , Microscopia Crioeletrônica , Modelos Moleculares , Canais Iônicos/metabolismo , Potássio
7.
Biomolecules ; 12(6)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35740912

RESUMO

Interactions between physical forces and membrane proteins underpin many forms of environmental sensation and acclimation. Microbes survive osmotic stresses with the help of mechanically gated ion channels and osmolyte transporters. Plant mechanosensitive ion channels have been shown to function in defense signaling. Here, we engineered genetically encoded osmolality sensors (OzTracs) by fusing fluorescent protein spectral variants to the mechanosensitive ion channels MscL from E. coli or MSL10 from A. thaliana. When expressed in yeast cells, the OzTrac sensors reported osmolality changes as a proportional change in the emission ratio of the two fluorescent protein domains. Live-cell imaging revealed an accumulation of fluorescent sensors in internal aggregates, presumably derived from the endomembrane system. Thus, OzTrac sensors serve as osmolality-dependent reporters through an indirect mechanism, such as effects on molecular crowding or fluorophore solvation.


Assuntos
Proteínas de Arabidopsis , Proteínas de Escherichia coli , Canais Iônicos , Proteínas de Membrana , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Concentração Osmolar , Pressão Osmótica
8.
Nat Commun ; 11(1): 3690, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704140

RESUMO

Mechanosensitive ion channels transduce physical force into electrochemical signaling that underlies an array of fundamental physiological processes, including hearing, touch, proprioception, osmoregulation, and morphogenesis. The mechanosensitive channels of small conductance (MscS) constitute a remarkably diverse superfamily of channels critical for management of osmotic pressure. Here, we present cryo-electron microscopy structures of a MscS homolog from Arabidopsis thaliana, MSL1, presumably in both the closed and open states. The heptameric MSL1 channel contains an unusual bowl-shaped transmembrane region, which is reminiscent of the evolutionarily and architecturally unrelated mechanosensitive Piezo channels. Upon channel opening, the curved transmembrane domain of MSL1 flattens and expands. Our structures, in combination with functional analyses, delineate a structural mechanism by which mechanosensitive channels open under increased membrane tension. Further, the shared structural feature between unrelated channels suggests the possibility of a unified mechanical gating mechanism stemming from membrane deformation induced by a non-planar transmembrane domain.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Eucariotos/metabolismo , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Mecanotransdução Celular , Proteínas de Arabidopsis/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/ultraestrutura , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína
9.
Nat Struct Mol Biol ; 27(7): 635-644, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572252

RESUMO

The transient receptor potential cation channel subfamily V member 3 (TRPV3) channel plays a critical role in skin physiology, and mutations in TRPV3 result in the development of a congenital skin disorder, Olmsted syndrome. Here we describe multiple cryo-electron microscopy structures of human TRPV3 reconstituted into lipid nanodiscs, representing distinct functional states during the gating cycle. The ligand-free, closed conformation reveals well-ordered lipids interacting with the channel and two physical constrictions along the ion-conduction pore involving both the extracellular selectivity filter and intracellular helix bundle crossing. Both the selectivity filter and bundle crossing expand upon activation, accompanied by substantial structural rearrangements at the cytoplasmic intersubunit interface. Transition to the inactivated state involves a secondary structure change of the pore-lining helix, which contains a π-helical segment in the closed and open conformations, but becomes entirely α-helical upon inactivation. Together with electrophysiological characterization, structures of TRPV3 in a lipid membrane environment provide unique insights into channel activation and inactivation mechanisms.


Assuntos
Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/química , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Microscopia Crioeletrônica , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Mutação , Nanoestruturas/química , Conformação Proteica , Canais de Cátion TRPV/genética
10.
Nat Struct Mol Biol ; 27(4): 373-381, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231289

RESUMO

The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties.


Assuntos
Trifosfato de Adenosina/química , Membrana Celular/ultraestrutura , Conexinas/ultraestrutura , Microscopia Crioeletrônica , Proteínas do Tecido Nervoso/ultraestrutura , Trifosfato de Adenosina/genética , Animais , Anuros/genética , Membrana Celular/química , Membrana Celular/genética , Conexinas/química , Conexinas/genética , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Conformação Proteica , Transdução de Sinais/genética
11.
J Gen Physiol ; 152(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31744859

RESUMO

Potassium ion conduction through open potassium channels is essential to control of membrane potentials in all cells. To elucidate the open conformation and hence the mechanism of K+ ion conduction in the classic inward rectifier Kir2.2, we introduced a negative charge (G178D) at the crossing point of the inner helix bundle, the location of ligand-dependent gating. This "forced open" mutation generated channels that were active even in the complete absence of phosphatidylinositol-4,5-bisphosphate (PIP2), an otherwise essential ligand for Kir channel opening. Crystal structures were obtained at a resolution of 3.6 Å without PIP2 bound, or 2.8 Å in complex with PIP2. The latter revealed a slight widening at the helix bundle crossing (HBC) through backbone movement. MD simulations showed that subsequent spontaneous wetting of the pore through the HBC gate region allowed K+ ion movement across the HBC and conduction through the channel. Further simulations reveal atomistic details of the opening process and highlight the role of pore-lining acidic residues in K+ conduction through Kir2 channels.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/química , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Simulação de Dinâmica Molecular , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
12.
Nat Chem Biol ; 15(4): 377-383, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833778

RESUMO

Potassium (K) channels exhibit exquisite selectivity for conduction of K+ ions over other cations, particularly Na+. High-resolution structures reveal an archetypal selectivity filter (SF) conformation in which dehydrated K+ ions, but not Na+ ions, are perfectly coordinated. Using single-molecule FRET (smFRET), we show that the SF-forming loop (SF-loop) in KirBac1.1 transitions between constrained and dilated conformations as a function of ion concentration. The constrained conformation, essential for selective K+ permeability, is stabilized by K+ but not Na+ ions. Mutations that render channels nonselective result in dilated and dynamically unstable conformations, independent of the permeant ion. Further, while wild-type KirBac1.1 channels are K+ selective in physiological conditions, Na+ permeates in the absence of K+. Moreover, whereas K+ gradients preferentially support 86Rb+ fluxes, Na+ gradients preferentially support 22Na+ fluxes. This suggests differential ion selectivity in constrained versus dilated states, potentially providing a structural basis for this anomalous mole fraction effect.


Assuntos
Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Animais , Sítios de Ligação , Permeabilidade da Membrana Celular/fisiologia , Cristalografia por Raios X/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Potássio/metabolismo , Potássio/fisiologia , Conformação Proteica , Imagem Individual de Molécula , Sódio/metabolismo , Relação Estrutura-Atividade
13.
Plant Direct ; 2(6)2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30506019

RESUMO

Mechanosensitive (MS) ion channels provide a universal mechanism for sensing and responding to increased membrane tension. MscS-like (MSL) 10 is a relatively well-studied MS ion channel from Arabidopsis thaliana that is implicated in cell death signaling. The relationship between the amino acid sequence of MSL10 and its conductance, gating tension, and opening and closing kinetics remains unstudied. Here, we identify several nonpolar residues in the presumptive pore-lining transmembrane helix of MSL10 (TM6) that contribute to these basic channel properties. F553 and I554 are essential for wild type channel conductance and the stability of the open state. G556, a glycine residue located at a predicted kink in TM6, is essential for channel conductance. The increased tension sensitivity of MSL10 compared to close homolog MSL8 may be attributed to F563, but other channel characteristics appear to be dictated by more global differences in structure. Finally, MSL10 F553V and MSL10 G556V provided the necessary tools to establish that MSL10's ability to trigger cell death is independent of its ion channel function.

14.
Sci Rep ; 8(1): 14566, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275500

RESUMO

Microbial survival in dynamic environments requires the ability to successfully respond to abrupt changes in osmolarity. The mechanosensitive channel of large conductance (MscL) is a ubiquitous channel that facilitates the survival of bacteria and archaea under severe osmotic downshock conditions by relieving excess turgor pressure in response to increased membrane tension. A prominent structural feature of MscL, the cytoplasmic C-terminal domain, has been suggested to influence channel assembly and function. In this report, we describe the X-ray crystal structure and electrophysiological properties of a C-terminal domain truncation of the Mycobacterium tuberculosis MscL (MtMscLΔC). A crystal structure of MtMscLΔC solubilized in the detergent n-dodecyl-ß-D-maltopyranoside reveals the pentameric, closed state-like architecture for the membrane spanning region observed in the previously solved full-length MtMscL. Electrophysiological characterization demonstrates that MtMscLΔC retains mechanosensitivity, but with conductance and tension sensitivity more closely resembling full length EcMscL than MtMscL. This study establishes that the C-terminal domain of MtMscL is not required for oligomerization of the full-length channel, but rather influences the tension sensitivity and conductance properties of the channel. The collective picture that emerges from these data is that each MscL channel structure has characteristic features, highlighting the importance of studying multiple homologs.


Assuntos
Canais Iônicos/química , Canais Iônicos/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/fisiologia , Pressão Osmótica , Estresse Fisiológico , Cristalografia por Raios X , Fenômenos Eletrofisiológicos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
15.
Nat Struct Mol Biol ; 25(3): 252-260, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29483651

RESUMO

The transient receptor potential (TRP) channel TRPV4 participates in multiple biological processes, and numerous TRPV4 mutations underlie several distinct and devastating diseases. Here we present the cryo-EM structure of Xenopus tropicalis TRPV4 at 3.8-Å resolution. The ion-conduction pore contains an intracellular gate formed by the inner helices, but lacks any extracellular gate in the selectivity filter, as observed in other TRPV channels. Anomalous X-ray diffraction analyses identify a single ion-binding site in the selectivity filter, thus explaining TRPV4 nonselectivity. Structural comparisons with other TRP channels and distantly related voltage-gated cation channels reveal an unprecedented, unique packing interface between the voltage-sensor-like domain and the pore domain, suggesting distinct gating mechanisms. Moreover, our structure begins to provide mechanistic insights to the large set of pathogenic mutations, offering potential opportunities for drug development.


Assuntos
Canais de Cátion TRPV/química , Proteínas de Xenopus/química , Animais , Canalopatias/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Ativação do Canal Iônico , Íons/química , Íons/metabolismo , Modelos Moleculares , Mutação , Permeabilidade , Domínios Proteicos
16.
Plant J ; 88(5): 809-825, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27505616

RESUMO

Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in Escherichia coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing, but is complementary and appears to be important under similar conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia
17.
Science ; 350(6259): 438-41, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494758

RESUMO

Pollen grains undergo dramatic changes in cellular water potential as they deliver the male germ line to female gametes, and it has been proposed that mechanosensitive ion channels may sense the resulting mechanical stress. Here, we identify and characterize MscS-like 8 (MSL8), a pollen-specific, membrane tension-gated ion channel required for pollen to survive the hypoosmotic shock of rehydration and for full male fertility. MSL8 negatively regulates pollen germination but is required for cellular integrity during germination and tube growth. MSL8 thus senses and responds to changes in membrane tension associated with pollen hydration and germination. These data further suggest that homologs of bacterial MscS have been repurposed in eukaryotes to function as mechanosensors in multiple developmental and environmental contexts.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Germinação/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Pressão Osmótica/fisiologia , Polinização/fisiologia , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Germinação/genética , Ativação do Canal Iônico , Canais Iônicos/genética , Mecanotransdução Celular/genética , Oócitos , Polinização/genética , Tensão Superficial , Água/fisiologia , Xenopus laevis
18.
Methods Mol Biol ; 1309: 151-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981775

RESUMO

The oocytes of the African clawed frog (Xenopus laevis) comprise one of the most widely used membrane protein expression systems. While frequently used for studies of transporters and ion channels, the application of this system to the study of mechanosensitive ion channels has been overlooked, perhaps due to a relative abundance of native expression systems. Recent advances, however, have illustrated the advantages of the oocyte system for studying plant and bacterial mechanosensitive channels. Here we describe in detail the methods used for heterologous expression and characterization of bacterial and plant mechanosensitive channels in Xenopus oocytes.


Assuntos
Canais Iônicos/genética , Proteínas de Membrana/genética , Oócitos/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Canais Iônicos/biossíntese , Mecanotransdução Celular/genética , Proteínas de Membrana/biossíntese , Oócitos/metabolismo , Xenopus laevis
19.
Plant Cell ; 26(7): 3115-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25052715

RESUMO

Members of the MscS superfamily of mechanosensitive ion channels function as osmotic safety valves, releasing osmolytes under increased membrane tension. MscS homologs exhibit diverse topology and domain structure, and it has been proposed that the more complex members of the family might have novel regulatory mechanisms or molecular functions. Here, we present a study of MscS-Like (MSL)10 from Arabidopsis thaliana that supports these ideas. High-level expression of MSL10-GFP in Arabidopsis induced small stature, hydrogen peroxide accumulation, ectopic cell death, and reactive oxygen species- and cell death-associated gene expression. Phosphomimetic mutations in the MSL10 N-terminal domain prevented these phenotypes. The phosphorylation state of MSL10 also regulated its ability to induce cell death when transiently expressed in Nicotiana benthamiana leaves but did not affect subcellular localization, assembly, or channel behavior. Finally, the N-terminal domain of MSL10 was sufficient to induce cell death in tobacco, independent of phosphorylation state. We conclude that the plant-specific N-terminal domain of MSL10 is capable of inducing cell death, this activity is regulated by phosphorylation, and MSL10 has two separable activities-one as an ion channel and one as an inducer of cell death. These findings further our understanding of the evolution and significance of mechanosensitive ion channels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Morte Celular , Evolução Molecular , Expressão Gênica , Genes Reporter , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Fosforilação , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia , Técnicas do Sistema de Duplo-Híbrido
20.
Biochemistry ; 52(34): 5708-22, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23947546

RESUMO

The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. The latter of these two families, the MscS family, consists of members from bacteria, archaea, fungi, and plants. Genetic and electrophysiological analysis of these family members has provided insight into how organisms use mechanosensitive channels for osmotic regulation in response to changing environmental and developmental circumstances. Furthermore, determining the crystal structure of E. coli MscS and several homologues in several conformational states has contributed to our understanding of the gating mechanisms of these channels. Here we summarize our current knowledge of MscS homologues from all three domains of life and address their structure, proposed physiological functions, electrophysiological behaviors, and topological diversity.


Assuntos
Proteínas de Escherichia coli/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Fenômenos Eletrofisiológicos , Escherichia coli/química , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Canais Iônicos/química , Pressão Osmótica/fisiologia , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA