Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ultrasound Med ; 42(10): 2183-2213, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37148467

RESUMO

Non-invasive ultrasound (US) imaging enables the assessment of the properties of superficial blood vessels. Various modes can be used for vascular characteristics analysis, ranging from radiofrequency (RF) data, Doppler- and standard B/M-mode imaging, to more recent ultra-high frequency and ultrafast techniques. The aim of the present work was to provide an overview of the current state-of-the-art non-invasive US technologies and corresponding vascular ageing characteristics from a technological perspective. Following an introduction about the basic concepts of the US technique, the characteristics considered in this review are clustered into: 1) vessel wall structure; 2) dynamic elastic properties, and 3) reactive vessel properties. The overview shows that ultrasound is a versatile, non-invasive, and safe imaging technique that can be adopted for obtaining information about function, structure, and reactivity in superficial arteries. The most suitable setting for a specific application must be selected according to spatial and temporal resolution requirements. The usefulness of standardization in the validation process and performance metric adoption emerges. Computer-based techniques should always be preferred to manual measures, as long as the algorithms and learning procedures are transparent and well described, and the performance leads to better results. Identification of a minimal clinically important difference is a crucial point for drawing conclusions regarding robustness of the techniques and for the translation into practice of any biomarker.


Assuntos
Artérias , Ultrassonografia Doppler , Humanos , Ultrassonografia/métodos , Artérias/diagnóstico por imagem , Algoritmos , Tecnologia
2.
Diagnostics (Basel) ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204323

RESUMO

Arterial stiffness is an independent predictor of cardiovascular events. The motion of arterial tissues during the cardiac cycle is important as a mechanical deformation representing vessel elasticity and is related to arterial stiffness. In addition, arterial pulsation is the main source of endogenous tissue micro-motions currently being studied for tissue elastography. Methods based on artery motion detection are not applied in clinical practice these days, because they must be carefully investigated in silico and in vitro before wide usage in vivo. The purpose of this paper is to propose a dynamic 3D artery model capable of reproducing the biomechanical behavior of human blood vessels surrounded by elastic tissue for endogenous deformation elastography developments and feasibility studies. The framework is based on a 3D model of a pulsating artery surrounded by tissue and simulation of linear scanning by Field II software to generate realistic dynamic RF signals and B-mode ultrasound image sequential data. The model is defined by a spatial distribution of motions, having patient-specific slopes of radial and longitudinal motion components of the artery wall and surrounding tissues. It allows for simulating the quantified mechanical micro-motions in the volume of the model. Acceptable simulation errors calculated between modeled motion patterns and those estimated from simulated RF signals and B-scan images show that this approach is suitable for the development and validation of elastography algorithms based on motion detection.

3.
Sensors (Basel) ; 21(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203320

RESUMO

Ultrasound echoscopy technologies are continuously evolving towards new modalities including quantitative parameter imaging, elastography, 3D scanning, and others. The development and analysis of new methods and algorithms require an adequate digital simulation of radiofrequency (RF) signal transformations. The purpose of this paper is the quantitative evaluation of RF signal simulation uncertainties in resolution and contrast reproduction with the model of a phased array transducer. The method is based on three types of standard physical phantoms. Digital 3D models of those phantoms are composed of point scatterers representing the weak backscattering of the background material and stronger backscattering from inclusions. The simulation results of echoscopy with sector scanning transducer by Field II software are compared with the RF output of the Ultrasonix scanner after scanning standard phantoms with 2.5 MHz phased array. The quantitative comparison of axial, lateral, and elevation resolutions have shown uncertainties from 9 to 22% correspondingly. The echoscopy simulation with two densities of scatterers is compared with contrast phantom imaging on the backscattered RF signals and B-scan reconstructed image, showing that the main sources of uncertainties limiting the echoscopy RF signal simulation adequacy are an insufficient knowledge of the scanner and phantom's parameters. The attempt made for the quantitative evaluation of simulation uncertainties shows both problems and the potential of echoscopy simulation in imaging technology developments. The analysis presented could be interesting for researchers developing quantitative ultrasound imaging and elastography technologies looking for simulated raw RF signals comparable to those obtained from real ultrasonic scanning.


Assuntos
Algoritmos , Transdutores , Simulação por Computador , Imagens de Fantasmas , Ultrassonografia
4.
Ultrasound Med Biol ; 46(10): 2605-2624, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32709520

RESUMO

Motion extracted from the carotid artery wall provides unique information for vascular health evaluation. Carotid artery longitudinal wall motion corresponds to the multiphasic arterial wall excursion in the direction parallel to blood flow during the cardiac cycle. While this motion phenomenon has been well characterized, there is a general lack of awareness regarding its implications for vascular health assessment or even basic vascular physiology. In the last decade, novel estimation strategies and clinical investigations have greatly advanced our understanding of the bi-axial behavior of the carotid artery, necessitating an up-to-date review to summarize and classify the published literature in collaboration with technical and clinical experts in the field. Within this review, the state-of-the-art methodologies for carotid wall motion estimation are described, and the observed relationships between longitudinal motion-derived indices and vascular health are reported. The vast number of studies describing the longitudinal motion pattern in plaque-free arteries, with its putative application to cardiovascular disease prediction, point to the need for characterizing the added value and applicability of longitudinal motion beyond established biomarkers. To this aim, the main purpose of this review was to provide a strong base of theoretical knowledge, together with a curated set of practical guidelines and recommendations for longitudinal motion estimation in patients, to foster future discoveries in the field, toward the integration of longitudinal motion in basic science as well as clinical practice.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Consenso , Humanos , Movimento (Física) , Guias de Prática Clínica como Assunto , Ultrassonografia
5.
Diagnostics (Basel) ; 10(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635379

RESUMO

We aim to estimate brain tissue displacements in the medial temporal lobe (MTL) using backscattered ultrasound radiofrequency (US RF) signals, and to assess the diagnostic ability of brain tissue displacement parameters for the differentiation of patients with Alzheimer's disease (AD) from healthy controls (HC). Standard neuropsychological evaluation and transcranial sonography (TCS) for endogenous brain tissue motion data collection are performed for 20 patients with AD and for 20 age- and sex-matched HC in a prospective manner. Essential modifications of our previous method in US waveform parametrization, raising the confidence of micrometer-range displacement signals in the presence of noise, are done. Four logistic regression models are constructed, and receiver operating characteristic (ROC) curve analyses are applied. All models have cut-offs from 61.0 to 68.5% and separate AD patients from HC with a sensitivity of 89.5% and a specificity of 100%. The area under a ROC curve of predicted probability in all models is excellent (from 95.2 to 95.7%). According to our models, AD patients can be differentiated from HC by a sharper morphology of some individual MTL spatial point displacements (i.e., by spreading the spectrum of displacements to the high-end frequencies with higher variability across spatial points within a region), by lower displacement amplitude differences between adjacent spatial points (i.e., lower strain), and by a higher interaction of these attributes.

6.
Diagnostics (Basel) ; 10(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973031

RESUMO

The purpose of this paper is a quantification of displacement parameters used in the imaging of brain tissue endogenous motion using ultrasonic radiofrequency (RF) signals. In a preclinical study, an ultrasonic diagnostic system with RF output was equipped with dedicated signal processing software and subject head-ultrasonic transducer stabilization. This allowed the use of RF scanning frames for the calculation of micrometer-range displacements, excluding sonographer-induced motions. Analysis of quantitative displacement estimates in dynamical phantom experiments showed that displacements of 55 µm down to 2 µm were quantified as confident according to Pearson correlation between signal fragments (minimum p ≤ 0.001). The same algorithm and scanning hardware were used in experiments and clinical imaging which allows translating phantom results to Alzheimer's disease patients and healthy elderly subjects as examples. The confident quantitative displacement waveforms of six in vivo heart-cycle episodes ranged from 8 µm up to 263 µm (Pearson correlation p ≤ 0.01). Displacement time sequences showed promising possibilities to evaluate the morphology of endogenous displacement signals at each point of the scanning plane, while displacement maps-regional distribution of displacement parameters-were essential for tissue characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA