Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 282, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080520

RESUMO

BACKGROUND: Gut microbiota have several advantages in influencing the host nutrition, metabolism, immunity and growth. However, the understanding of the gut microbiota in key edible wood-boring beetle larvae remain largely undefined. In the present study, the characteristics of the gut microbiota of two edible wood-boring species (Titocerus jaspideus and Passalus punctiger) from two indigenous forested areas were investigated. RESULTS: Over 50% of Amplicon Sequence Variants (ASVs) constituted of Firmicutes in T. jaspideus. The dominant phyla in both beetle species were Bacteroidota (4.20-19.79%) and Proteobacteria (15.10-23.90%). Lactococcus lactis was the most abundant and core prokaryote in the guts of T. jaspideus. The fungi identified in the gut of both insects belong to the phylum Obazoa (66%) and Ascomycota (> 15%). Scheffersomyeces sp. was the core eukaryote recorded. The diversity of gut microbiota in both insect species did not vary significantly. Most of the prokaryotic genes expressed were predominantly associated with biosynthesis and metabolism. CONCLUSION: Our findings demonstrated that Lactococcus lactis and Scheffersomyeces are core gut microbes of wood boring beetle larvae with desirable probiotic properties and promising use in food product fermentation for improved growth performance, gut barrier health, intestinal flora balance and immune protection for human and animals. Further studies to highlight the latest medical-based applications of L. lactis as live-delivery vector for the administration of therapeutics against both communicable and non-communicable diseases are warranted.


Assuntos
Besouros , Microbioma Gastrointestinal , Lactococcus lactis , Larva , Simbiose , Animais , Lactococcus lactis/genética , Besouros/microbiologia , Larva/microbiologia , Madeira/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
2.
Front Microbiol ; 13: 922760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910617

RESUMO

Trypanosomes are important global livestock and human pathogens of public health importance. Elucidating the chemical mechanisms of trypanosome-relevant host interactions can enhance the design and development of a novel, next-generation trypanosomosis diagnostics. However, it is unknown how trypanosome infection affects livestock volatile odors. Here, we show that Trypanosoma congolense and Trypanosoma vivax infections induced dihydro-ß- ionone and junenol, while abundance of dihydro-α-ionone, phenolics, p-cresol, and 3-propylphenol significantly elevated in cow urine. These biomarkers of trypanosome infection are conserved in cow breath and the urine metabolites of naturally infected cows, regardless of population, diet, or environment differences. Furthermore, treating trypanosome-infected cows reduced the levels of these indicators back to the pre-infection levels. Finally, we demonstrated that the potential of some specific biomarkers of phenolic origin may be used to detect active trypanosome infections, including low-level infections that are not detectable by microscopy. The sensitivity and specificity of biomarkers detection are suited for rapid, robust, and non-invasive trypanosomosis diagnosis under field conditions.

3.
Biomolecules ; 11(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917773

RESUMO

Olfaction is orchestrated at different stages and involves various proteins at each step. For example, odorant-binding proteins (OBPs) are soluble proteins found in sensillum lymph that might encounter odorants before reaching the odorant receptors. In tsetse flies, the function of OBPs in olfaction is less understood. Here, we investigated the role of OBPs in Glossina fuscipes fuscipes olfaction, the main vector of sleeping sickness, using multidisciplinary approaches. Our tissue expression study demonstrated that GffLush was conserved in legs and antenna in both sexes, whereas GffObp44 and GffObp69 were expressed in the legs but absent in the antenna. GffObp99 was absent in the female antenna but expressed in the male antenna. Short odorant exposure induced a fast alteration in the transcription of OBP genes. Furthermore, we successfully silenced a specific OBP expressed in the antenna via dsRNAi feeding to decipher its function. We found that silencing OBPs that interact with 1-octen-3-ol significantly abolished flies' attraction to 1-octen-3-ol, a known attractant for tsetse fly. However, OBPs that demonstrated a weak interaction with 1-octen-3-ol did not affect the behavioral response, even though it was successfully silenced. Thus, OBPs' selective interaction with ligands, their expression in the antenna and their significant impact on behavior when silenced demonstrated their direct involvement in olfaction.


Assuntos
Comunicação Animal , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Moscas Tsé-Tsé/fisiologia , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Sítios de Ligação , Feminino , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Octanóis/química , Octanóis/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Odorantes/antagonistas & inibidores , Receptores Odorantes/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA