Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678122

RESUMO

Copper-based chalcogenides have emerged as promising thermoelectric materials due to their high thermoelectric performance, tunable transport properties, earth abundance and low toxicity. We have presented an overview of experimental results and first-principal calculations investigating the thermoelectric properties of various polymorphs of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe) synthesized by high-energy reactive mechanical alloying (ball milling). Of particular interest are the disordered polymorphs of these materials, which exhibit phonon-glass-electron-crystal behavior-a decoupling of electron and phonon transport properties. The interplay of cationic disorder and nanostructuring leads to ultra-low thermal conductivities while enhancing electronic transport. These beneficial transport properties are the consequence of a plethora of features, including trap states, anharmonicity, rattling, and conductive surface states, both topologically trivial and non-trivial. Based on experimental results and computational methods, this report aims to elucidate the details of the electronic and lattice transport properties, thereby confirming that the higher thermoelectric (TE) performance of disordered polymorphs is essentially due to their complex crystallographic structures. In addition, we have presented synchrotron X-ray diffraction (SR-XRD) measurements and ab initio molecular dynamics (AIMD) simulations of the root-mean-square displacement (RMSD) in these materials, confirming anharmonicity and bond inhomogeneity for disordered polymorphs.

2.
RSC Adv ; 12(52): 33488-33500, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505677

RESUMO

The mechanochemical synthesis of all cobalt tellurides' phases is demonstrated in this work. The samples had their structural, microstructural, and magnetic characterizations performed by X-ray powder diffraction, transmission electron microscopy, and magnetometry techniques. The initial atomic stoichiometries tested of Co32Te68 and Co40Te60 resulted in the synthesis of the γ-CoTe2 Pnnm (marcasite), α-CoTe2 Pa3̄ (pyrite), α-CoTe2 P3̄m1 (CdI2-like), and ß-CoTe P63/mmc phases with different weight proportions in the sample. Modeling of the X-ray diffractograms employed conventional double-Voigt and crystallite shape-anisotropy DV approaches to show that the volumetric diameter average and true crystallite size of the diffraction domains are in the range of tens of nanometers. Transmission electron microscopy measurements also allowed distribution counting of the crystallite sizes via maximum caliper diameter. Electron diffraction experiments presented comparable structural parameters with Rietveld via the analysis of the Debye rings. A model using the Langevin approaches showed the phases to present both ferromagnetic and superparamagnetic contributions attributed to weakly-interacting metallic Co grains with magnetic domain sizes ranging between 2.3 and 4.0 nm. The phases' evolution with storage time was analyzed over two years and revealed to be stable regarding their structural and microstructural properties.

3.
RSC Adv ; 11(9): 5027-5034, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424448

RESUMO

This work reports an unprecedented mechanochemistry synthesis of ß-CoTe and its systematic characterization through X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and magnetometry techniques. The mechanical alloying produced the desired material within 6 h along with minor impurities, showing good stabilization for higher milling times (15 h) and long-term storage. XRPD characterization employed the Rietveld profile fitting analysis with fundamental parameters analysis in a direct convolution approach, giving the material's structure and microstructure information. For the spherical shape, the diameter mass average of the crystallites furnished values around 13 nm with 1.1% of microstrain. The double-Voigt procedure also modeled a triaxial ellipsoid shape for the crystallite size and obtained a surface-weighted average value for its volume around 150 nm3. TEM images confirmed the nanometric size visually and showed the crystallites to aggregate in large particles hundreds of nanometers in size. Measuring hundreds of supposed crystallite sizes, we could achieve a numerical distribution of their sizes with an average of 16 nm. The magnetization analysis performed both experimentally and via numerical simulations showed that ß-CoTe is predominantly superparamagnetic with a magnetic domain size compatible with the double-Voigt one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA