Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 919835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389172

RESUMO

During early infection with Trichinella spiralis, host neutrophils destroy newborn larvae migrating in the bloodstream, preventing infection. However, parasites secrete various immunomodulatory molecules to escape the host's defense mechanisms, allowing them to infect the host and live for long periods. T. spiralis secretes serine protease inhibitors (TsSERPs), which are key inhibitory molecules that regulate serine proteases involved in digestion and inflammation. However, the modulatory roles of TsSERP in the inhibition of neutrophil serine proteases (NSPs) and neutrophil functions are unknown. Therefore, the immunomodulatory properties of recombinant TsSERP1 (rTsSERP1) on NSPs and neutrophil functions were investigated in this study. rTsSERP1 preferentially inhibited human neutrophil elastase (hNE). In addition, incubation of rTsSERP1 with fMLP-induced neutrophils impaired their phagocytic ability. The formation of neutrophil extracellular traps (NETs) was activated with phorbol myristate acetate (PMA), and NETs were dramatically reduced when treated with rTsSERP1. Furthermore, rTsSERP1 suppressed the production of proinflammatory cytokines and chemokines during neutrophil activation, which are essential for neutrophil-mediated local or systemic inflammation regulation. In conclusion, T. spiralis immune evasion mechanisms are promoted by the inhibitory properties of TsSERP1 against neutrophil elastase and neutrophil defense functions, and these might be promising alternative treatment targets for inflammatory disorders.


Assuntos
Serpinas , Trichinella spiralis , Animais , Recém-Nascido , Humanos , Elastase de Leucócito , Inibidores de Serina Proteinase/farmacologia , Neutrófilos , Serina Proteases , Inflamação
2.
Pathogens ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578113

RESUMO

Gnathostoma spinigerum is the most common cause of gnathostomiasis in humans. It has a complex life cycle, which requires two intermediate hosts and a definitive host, and poses a high risk for zoonosis. Definitive prognosis of gnathostomiasis relies mainly on the isolation of advanced-stage larvae (aL3), which is very challenging especially if the aL3 is sequestered in difficult-to-reach organs. There is also a lack of a confirmatory diagnostic test for gnathostomiasis. With the ongoing advancement of proteomics, a potential diagnostic approach is underway using immunoproteomics and immunodiagnostics. In addition to this, the employment of mass spectrometry could further elucidate not only understanding the biology of the parasite but also determining potential targets of prospective drugs and vaccines. This article reports the past, present, and future application of proteomics in the study of gnathostomiasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA