Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39053909

RESUMO

It has been proposed that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that spread through human populations as a pandemic originated in Asian bats. There is concern that infected humans could transmit the virus to native North American bats; therefore, the susceptibility of several North American bat species to the pandemic virus has been experimentally assessed. Big brown bats (Eptesicus fuscus) were shown to be resistant to infection by SARS-CoV-2, whereas Mexican free-tailed bats (Tadarida brasiliensis) became infected and orally excreted moderate amounts of virus for up to 18 d postinoculation. Little brown bats (Myotis lucifugus) frequently contact humans, and their populations are threatened over much of their range due to white-nose syndrome, a fungal disease that is continuing to spread across North America. We experimentally challenged little brown bats with SARS-CoV-2 to determine their susceptibility and host potential and whether the virus presents an additional risk to this species. We found that this species was resistant to infection by SARS-CoV-2. These findings provide reassurance to wildlife rehabilitators, biologists, conservation scientists, and the public at large who are concerned with possible transmission of this virus to threatened bat populations.

2.
Vaccines (Basel) ; 9(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34960182

RESUMO

Rabies is an ancient disease that is responsible for approximately 59,000 human deaths annually. Bats (Order Chiroptera) are thought to be the original hosts of rabies virus (RABV) and currently account for most rabies cases in wildlife in the Americas. Vaccination is being used to manage rabies in other wildlife reservoirs like fox and raccoon, but no rabies vaccine is available for bats. We previously developed a recombinant raccoonpox virus (RCN) vaccine candidate expressing a mosaic glycoprotein (MoG) gene that protected mice and big brown bats when challenged with RABV. In this study, we developed two new recombinant RCN candidates expressing MoG (RCN-tPA-MoG and RCN-SS-TD-MoG) with the aim of improving RCN-MoG. We assessed and compared in vitro expression, in vivo immunogenicity, and protective efficacy in vaccinated mice challenged intracerebrally with RABV. All three candidates induced significant humoral immune responses, and inoculation with RCN-tPA-MoG or RCN-MoG significantly increased survival after RABV challenge. These results demonstrate the importance of considering molecular elements in the design of vaccines, and that vaccination with either RCN-tPA-MoG or RCN-MoG confers adequate protection from rabies infection, and either may be a sufficient vaccine candidate for bats in future work.

3.
Vector Borne Zoonotic Dis ; 19(7): 486-493, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30994405

RESUMO

Plague is a lethal zoonotic disease associated with rodents worldwide. In the western United States, plague outbreaks can decimate prairie dog (Cynomys spp.) colonies. However, it is unclear where the causative agent, Yersinia pestis, of this flea-borne disease is maintained between outbreaks, and what triggers plague-induced prairie dog die-offs. Less susceptible rodent hosts, such as mice, could serve to maintain the bacterium, transport infectious fleas across a colony, or introduce the pathogen to other colonies, possibly facilitating an outbreak. Here, we assess the potential role of two short-lived rodent species, North American deer mice (Peromyscus maniculatus) and Northern grasshopper mice (Onychomys leucogaster) in plague dynamics on prairie dog colonies. We live-trapped short-lived rodents and collected their fleas on black-tailed (Cynomys ludovicianus, Montana and South Dakota), white-tailed (Cynomys leucurus, Utah and Wyoming), and Utah prairie dog colonies (Cynomys parvidens, Utah) annually, from 2013 to 2016. Plague outbreaks occurred on colonies of all three species. In all study areas, deer mouse abundance was high the year before plague-induced prairie dog die-offs, but mouse abundance per colony was not predictive of plague die-offs in prairie dogs. We did not detect Y. pestis DNA in mouse fleas during prairie dog die-offs, but in three cases we found it beforehand. On one white-tailed prairie dog colony, we detected Y. pestis positive fleas on one grasshopper mouse and several prairie dogs live-trapped 10 days later, months before visible declines and plague-confirmed mortality of prairie dogs. On one black-tailed prairie dog colony, we detected Y. pestis positive fleas on two deer mice 3 months before evidence of plague was detected in prairie dogs or their fleas and also well before a plague-induced die-off. These observations of plague positive fleas on mice could represent early spillover events of Y. pestis from prairie dogs or an unknown reservoir, or possible movement of infectious fleas by mice.


Assuntos
Peste/veterinária , Sciuridae/microbiologia , Sifonápteros/microbiologia , Yersinia pestis/isolamento & purificação , Animais , Arvicolinae/microbiologia , Arvicolinae/parasitologia , DNA Bacteriano , Surtos de Doenças , Infestações por Pulgas , Insetos Vetores/microbiologia , Peromyscus/microbiologia , Peromyscus/parasitologia , Peste/epidemiologia , Peste/mortalidade , Sciuridae/parasitologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA