Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Cogn Neurodyn ; 18(2): 349-356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699620

RESUMO

Muscle synergies have been hypothesized as specific predefined motor primitives that the central nervous system can reduce the complexity of motor control by using them, but how these are expressed in brain activity is ambiguous yet. The main purpose of this paper is to develop synergy-based neural decoding of motor primitives, so for the first time, brain activity and muscle synergy map of the upper extremity was investigated in the activity of daily living movements. To find the relationship between brain activities and muscle synergies, electroencephalogram (EEG) and electromyogram (EMG) signals were acquired simultaneously during activities of daily living. To extract the maximum correlation of neural commands with muscle synergies, application of a combined partial least squares and canonical correlation analysis (PLS-CCA) method was proposed. The Elman neural network was used to decode the relationship between extracted motor commands and muscle synergies. The performance of proposed method was evaluated with tenfold cross-validation and muscle synergy estimation of brain activity with R, VAF, and MSE of 84 ± 2.6%, 70 ± 4.7%, and 0.00011 ± 0.00002 were quantified respectively. Furthermore, the similarity between actual and reconstructed muscle activations was achieved more than 92% for correlation coefficient. To compare with the existing methods, our results showed significantly more accuracy of the model performance. Our results confirm that use of the expression of muscle synergies in brain activity can estimate the neural decoding performance for motor control that can be used to develop neurorehabilitation tools such as neuroprosthesis.

2.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714808

RESUMO

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Assuntos
Ágar , Fibroínas , Hidrogéis , Nanocompostos , Tragacanto , Fibroínas/química , Humanos , Hidrogéis/química , Ágar/química , Nanocompostos/química , Tragacanto/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Células HEK293 , Zinco/química , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Testes de Sensibilidade Microbiana , Células MCF-7 , Linhagem Celular Tumoral
3.
Talanta ; 275: 126099, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640517

RESUMO

Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.

5.
RSC Adv ; 14(19): 13676-13684, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665491

RESUMO

Herein, a new magnetic nanobiocomposite based on a synthesized cross-linked pectin-cellulose hydrogel (cross-linked Pec-Cel hydrogel) substrate was designed and synthesized. The formation of the cross-linked Pec-Cel hydrogel with a calcium chloride agent and its magnetization process caused a new and efficient magnetic nanobiocomposite. Several spectral and analytical techniques, including FTIR, SEM, VSM, TGA, XRD, and EDX analyses, were performed to confirm and characterize the structural features of the magnetic cross-linked pectin-cellulose hydrogel nanobiocomposite (magnetic cross-linked Pec-Cel hydrogel nanobiocomposite). Based on SEM images, prepared Fe3O4 magnetic nanoparticles (MNPs) were uniformly dispersed in the Pec-Cel hydrogel context, representing an average particle size between 50.0 and 60.0 nm. The XRD pattern also confirms the crystallinity of the magnetic nanobiocomposite. All constituent elements and their distribution have been depicted in the EDX analysis of the magnetic nanobiocomposite. VSM curves confirmed the superparamagnetic behavior of Fe3O4 MNPs and the magnetic nanobiocomposite with a saturation magnetization of 77.31 emu g-1 and 48.80 emu g-1, respectively. The thermal stability of the nanobiocomposite was authenticated to ca. 800 °C based on the TGA thermogram. Apart from analyzing the structural properties of the magnetic cross-linked Pec-Cel hydrogel nanobiocomposite, different concentrations (0.5 mg mL-1, 1.0 mg mL-1, 2.0 mg mL-1, 5.0 mg mL-1, and 10.0 mg mL-1) of this new magnetic nanostructure were exposed to an alternating magnetic field (AMF) at different frequencies (100.0 MHz, 200.0 MHz, 300.0 MHz, and 400.0 MHz) to evaluate its capacity for an in vitro hyperthermia process; in addition, the highest specific absorption rate (126.0 W g-1) was obtained by the least magnetic nanobiocomposite concentration (0.5 mg mL-1).

6.
Sci Rep ; 14(1): 8166, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589455

RESUMO

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Assuntos
Fibroínas , Hipertermia Induzida , Tragacanto , Alicerces Teciduais , Hidrogéis , Fenômenos Magnéticos
7.
J Integr Neurosci ; 23(4): 73, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682224

RESUMO

BACKGROUND: To enhance the information transfer rate (ITR) of a steady-state visual evoked potential (SSVEP)-based speller, more characters with flickering symbols should be used. Increasing the number of symbols might reduce the classification accuracy. A hybrid brain-computer interface (BCI) improves the overall performance of a BCI system by taking advantage of two or more control signals. In a simultaneous hybrid BCI, various modalities work with each other simultaneously, which enhances the ITR. METHODS: In our proposed speller, simultaneous combination of electromyogram (EMG) and SSVEP was applied to increase the ITR. To achieve 36 characters, only nine stimulus symbols were used. Each symbol allowed the selection of four characters based on four states of muscle activity. The SSVEP detected which symbol the subject was focusing on and the EMG determined the target character out of the four characters dedicated to that symbol. The frequency rate for character encoding was applied in the EMG modality and latency was considered in the SSVEP modality. Online experiments were carried out on 10 healthy subjects. RESULTS: The average ITR of this hybrid system was 96.1 bit/min with an accuracy of 91.2%. The speller speed was 20.9 char/min. Different subjects had various latency values. We used an average latency of 0.2 s across all subjects. Evaluation of each modality showed that the SSVEP classification accuracy varied for different subjects, ranging from 80% to 100%, while the EMG classification accuracy was approximately 100% for all subjects. CONCLUSIONS: Our proposed hybrid BCI speller showed improved system speed compared with state-of-the-art systems based on SSVEP or SSVEP-EMG, and can provide a user-friendly, practical system for speller applications.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletromiografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados Visuais/fisiologia , Adulto , Masculino , Eletroencefalografia/métodos , Feminino , Adulto Jovem , Encéfalo/fisiologia
9.
RSC Adv ; 14(19): 13016, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655489

RESUMO

Expression of concern for 'Facile route to synthesize Fe3O4@acacia-SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications' by Reza Taheri-Ledari et al., RSC Adv., 2020, 10, 40055-40067, https://doi.org/10.1039/D0RA07986C.

10.
Carbohydr Polym ; 334: 122008, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553201

RESUMO

Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.


Assuntos
Cartilagem , Engenharia Tecidual , Cartilagem/metabolismo , Osso e Ossos , Polissacarídeos Bacterianos/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo
11.
J Environ Manage ; 356: 120670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531142

RESUMO

One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.


Assuntos
Poluentes Ambientais , Metais Pesados , Nanoestruturas , Poluentes Químicos da Água , Purificação da Água , Poluentes Ambientais/química , Nanoestruturas/química , Purificação da Água/métodos , Metais Pesados/química , Adsorção , Íons , Poluentes Químicos da Água/química
12.
RSC Adv ; 14(14): 9798, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38528934

RESUMO

Expression of concern for 'Highly porous copper-supported magnetic nanocatalysts: made of volcanic pumice textured by cellulose and applied for the reduction of nitrobenzene derivatives' by Reza Taheri-Ledari et al., RSC Adv., 2021, 11, 25284-25295, https://doi.org/10.1039/D1RA03538J.

13.
Clin Transl Oncol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512448

RESUMO

Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.

15.
BMC Infect Dis ; 24(1): 216, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373941

RESUMO

The coronavirus disease of 2019 (COVID-19) resulted from an infection by severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) which is the main cause of acute respiratory distress syndrome (ARDS) in global population from 2019 on. It may contribute to higher rate of death among the patients with immunodeficiency based on recent reports. In addition, Good syndrome (GS) as a result of thymoma removal might cause in some long-lasting microbial infections. We described clinical aspects and viral mutations on a case of GS suffering from COVID-19. A 46-year-old man with fever, common respiratory disease symptoms and positive COVID-19 polymerase chain reaction (PCR) test, with the history of thymoma removal surgery was admitted to Masih Daneshvari Hospital, Tehran, Iran. Lung radiographs and oxygen saturation measurement disclosed considerable implication resulted in application of several anti-microbial medication. The delta variant (B.1.617.2 (21 J Clade)) was the strain isolated from the patient by sequencing methods done by the COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, while the dominant strain circulated mostly among population was Omicron (B.1.1.529) at the time of sampling. Unfortunately, the patient had passed away a month later by sudden respiratory failure progressed in refractory septic shock. Despite the fact that opportunistic infections may lead the GS patients to a major health problematic condition, unusual persistent of infections such as non-dominant variant of SARS-Cov-2 could be observed through the disease timeline. Therefore, a fully screening of thymoma plus intra-host evolution monitoring of SARS-CoV-2 is highly recommended in immunocompromised patients.


Assuntos
COVID-19 , Doenças da Imunodeficiência Primária , Timoma , Neoplasias do Timo , Masculino , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/genética , Timoma/complicações , Timoma/genética , Irã (Geográfico) , Genômica
16.
Sci Rep ; 14(1): 3137, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326474

RESUMO

In this study, a new nanocomposite was created by combining copper-doped nickel ferrite (NiCuFe2O4) nanoparticles with MCM-48 (Mobil Composition of Matter No. 48) on a graphene oxide (GO) substrate functionalized with poly(ρ-phenylenediamine) abbreviated as (PρPD). This nanocomposite was developed to investigate its potential for enhancing the function of a supercapacitor in energy storage. Following NiCuFe2O4@MCM-48 preparation, Hummer's technique GO was applied. In-situ polymerization of NiCuFe2O4@MCM-48/GO nanoparticles with ρ-phenylenediamine (ρPD) in the presence of ammonium persulfate (APS) produced PρPD, a conductive polymer. Structural characterization of the nanocomposite includes FTIR, XRD, VSM, TGA-DTG, EDX, and FE-SEM. Results from BET indicate a pore size increase of up to 5 nm. Fast ion penetration and higher storage in capacitor material are explained by this. Additionally, the nanocomposite's electrochemical performance was evaluated using GCD and CV tests. The NiCuFe2O4@MCM-48/GO/PρPD nanocomposite has a specific capacitance of 203.57 F g-1 (1 A g-1). Furthermore, cyclical stability is essential for energy storage applications. The nanocomposite retains 92.5% of its original capacitance after 3000 cycles, indicating outstanding electrochemical stability.

17.
Heliyon ; 10(1): e23139, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173523

RESUMO

This work presents a novel, strong and efficient adsorbent (CS@TDI@EDTA@γ-AlO(OH)) prepared through the green process using three components, chitosan, BNPs and EDTA using amide and ester bridges. An eco-friendly and easy approach was used for the preparation of this novel adsorbent, the low cost, easy access to the used materials, and the simplicity of the preparation method are some of the interesting advantages of this work. Also, this prepared adsorbent was used as an adsorbent to remove diazinon organophosphate poison and tetracycline antibiotic from aqueous solutions. In order to confirm the prepared adsorbent structure, the CS@TDI@EDTA@γ-AlO(OH) composite was investigated by various analyses including FT-IR, EDX, XRD, FESEM and TGA. The adsorption behavior of the adsorbent prepared for the removal of tetracycline and diazinon was investigated under different conditions by varying the concentration, temperature, the adsorbent dose, pH and contact time. Based on various tests, the highest diazinon adsorption capacity was obtained for 0.12 g/L adsorbent at pH 7 and 60 °C with 40 mg/L initial concentration. Also, the maximum adsorption capacity of the tetracycline was obtained for 0.12 g/L adsorbent at pH 9 and 60 °C with 30 mg/L initial concentration. The equilibrium results for diazinon and for tetracycline were in good accordance with the Langmuir and Freundlich isotherm models, respectively. Also, the highest adsorption capacities for diazinon at pH 7 and tetracycline at pH 9 were 1428.5 and 555.5 mg/g, respectively. Also the kinetic investigations revealed that the correlation factor (R2) of pseudo-second-order model obtained for the adsorption of diazinon and tetracycline was 0.9986 and 0.9988, while the coefficient k (g/mg.min) was 0.000084 and 0.0033, respectively. These results indicate that the adsorption of diazinon and tetracycline is pseudo-second-order kinetics model. Formation of hydrogen bonds between adsorbate and adsorbent as well as the high specific surface area and porosity of the adsorbent are the main mechanisms that contribute to the adsorption process. In addition, thermodynamic studies indicated that the adsorption of diazinon and tetracycline is a spontaneous endothermic process. The adsorbent prepared in this work was expected to have wide range of applications in wastewater treatment thanks to its good reusability in water and strong removal of diazinon and tetracycline compared to other adsorbents.

18.
Nanoscale Adv ; 6(2): 337-366, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235087

RESUMO

Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.

20.
Basic Clin Neurosci ; 14(3): 431-442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077181

RESUMO

Introduction: Negative early-life experiences (e.g. having an aggressive father) can leave long-lastingimpacts on the behavior. However, it is not clear if they influence learning and memory. Methods: In this study, we investigated the influences that the presence of an aggressive father had on the level of passive avoidance learning and spatial memory. We also studied the changes in the dopamine receptor D2 (DRD2) and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) gene expression in the hippocampus. Then, we evaluated if a DRD2 antagonist (sulpiride, 0.125, 0.25, or 0.5 µg/rat) could modulate these changes. Results: We found that the subjects exposed to early-life stress made by aggressive fathers had impaired passive avoidance learning and spatial memory compared to subjects with normal fathers. Treatment with sulpiride improved passive avoidance learning and spatial memory in rats with aggressive fathers. The rats with aggressive fathers also had higher expression of the DRD2 gene in their hippocampus than those with normal fathers, while the PGC-1α gene expression was not different among groups. Treatment with sulpiride (0.125, 0.25, or 0.5 µg/rat) reduced the DRD2 gene expression in those with aggressive fathers to the normal level compared to those with normal fathers. Conclusion: These data suggest that having and living in a shared place with an aggressive father, even without any physical contact, can detrimentally affect passive avoidance learning and spatial memory which is accompanied by the increased expression of the DRD2 gene. Also, sulpiride as a dopaminergic antagonist could reverse this process. Highlights: Having and living with an aggressive father reduced learning and memory in offspring.Having and living with an aggressive father during early life increased DRD2 gene expression.Sulpiride improved learning and memory and also normalized DRD2 gene expression.A combination of genetic and environmental factors may modulate learning and memory. Plain Language Summary: In this study, we looked at how having an aggressive father, can affect behavior in the long term. We wanted to find out if this factor influences learning and memory. To do this, we investigated how the presence of an aggressive father affected passive avoidance learning and spatial memory in subjects. We also examined specific genes in the brain, called DRD2 and PGC-1α, which are known to be involved in learning and memory. Specifically, we wanted to see if the expression of these genes in the hippocampus (a region of the brain important for memory) was affected by having and presence of an aggressive father. To understand the role of the DRD2 gene further, we used a drug called sulpiride, which blocks the action of DRD2. We administered sulpiride to the subjects with aggressive fathers to see if it could reverse any negative effects on learning and memory. What we found was that subjects that had aggressive fathers had impaired passive avoidance learning and spatial memory compared to those with normal fathers. However, when we treated the subjects with sulpiride, their learning and memory improved. Additionally, we observed that rats with aggressive fathers had higher levels of the DRD2 gene in their hippocampus, while the PGC-1α gene expression was not different among the groups. The administration of sulpiride reduced the expression of the DRD2 gene in rats with aggressive fathers, bringing it back to normal levels similar to those with normal fathers. These findings suggest that having and living in the same environment as an aggressive father, even without direct physical contact, can negatively impact passive avoidance learning and spatial memory. This effect seems to be associated with increased expression of the DRD2 gene. However, using sulpiride as a dopaminergic antagonist can reverse this process and improve learning and memory in these subjects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA