Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 908218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874014

RESUMO

Transcriptional silencing of 35S rDNA loci inherited from one parental species is occurring relatively frequently in allopolyploids. However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). The size of the recovered 35S rDNA units varied from 10,489 bp in A. cylindrica to 12,084 bp in A. sylvestris. Anemone showed an organization typical of most ribosomal 35S rDNA composed of NTS, ETS, rRNA genes, TTS and TIS with structural features of plant IGS sequences and all functional elements needed for rRNA gene activity. The NTS was more variable than the ETS and consisted of SRs which are highly variable among Anemone. Five to six CpG-rich islands were found within the ETS. CpG island located adjacent to the transcription initiation site (TIS) was highly variable regarding the sequence size and methylation level and exhibited in most of the species lower levels of methylation than CpG islands located adjacent to the 18S rRNA gene. Our results uncover hypomethylation of A. sylvestris- and A. parviflora-derived 35S rDNA units in allopolyploids A. multifida and A. baldensis. Hypomethylation of A. parviflora-derived 35S rDNA was more prominent in A. baldensis than in A. multifida. We showed that A. baldensis underwent coupled A. sylvestris-derived 35S rDNA array expansion and A. parviflora-derived 35S rDNA copy number decrease that was accompanied by lower methylation level of A. sylvestris-derived 35S rDNA units in comparison to A. parviflora-derived 35S rDNA units. These observations suggest that in A. baldensis nucleolar dominance is directed toward A. sylvestris-derived chromosomes. This work broadens our current knowledge of the 35S rDNA organization in Anemone and provides evidence of the progenitor-specific 35S rDNA methylation in nucleolar dominance.

2.
Plants (Basel) ; 11(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684258

RESUMO

Grapevine collections play an important role, especially in the study of viruses and virus-like pathogens. In 2009, after an initial ELISA screening for eight viruses (arabis mosaic virus, grapevine fanleaf virus, grapevine fleck virus, grapevine leafroll-associated viruses 1, 2, and 3, and grapevine viruses A and B), a collection of 368 grapevine accessions representing 14 different Croatian autochthonous cultivars and containing single or mixed infection of viruses was established to further characterize the viral pathogens. Subsequently, Western blot, RT-PCR, cloning, and sequencing revealed that grapevine rupestris stem pitting-associated virus was frequently found in accessions of the collection, with isolates showing substantial genetic diversity in the helicase and coat protein regions. High-throughput sequencing of 22 grapevine accessions provides additional insight into the viruses and viroids present in the collection and confirms the fact that Croatian autochthonous grapevine cultivars have high infection rates and high virome diversity. The recent spread of "flavescence dorée" phytoplasma in Europe has not spared the collection. After the first symptoms observed in 2020 and 2021, the presence of phytoplasma was confirmed by LAMP in six grapevine accessions and some of them were lost. Single or multiple viruses and viroids, as well as own rooted grapevines in the collection, make the plants susceptible to various abiotic factors, which, together with the recent occurrence of "flavescence dorée", makes the maintenance of the collection a challenge. Future efforts will be directed towards renewing the collection, as 56% of the original collection has been lost in the last 13 years.

3.
Genes (Basel) ; 12(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34828366

RESUMO

The multiple-stress effects on plant physiology and gene expression are being intensively studied lately, primarily in model plants such as Arabidopsis, where the effects of six stressors have simultaneously been documented. In maize, double and triple stress responses are obtaining more attention, such as simultaneous drought and heat or heavy metal exposure, or drought in combination with insect and fungal infestation. To keep up with these challenges, maize natural variation and genetic engineering are exploited. On one hand, quantitative trait loci (QTL) associated with multiple-stress tolerance are being identified by molecular breeding and genome-wide association studies (GWAS), which then could be utilized for future breeding programs of more resilient maize varieties. On the other hand, transgenic approaches in maize have already resulted in the creation of many commercial double or triple stress resistant varieties, predominantly weed-tolerant/insect-resistant and, additionally, also drought-resistant varieties. It is expected that first generation gene-editing techniques, as well as recently developed base and prime editing applications, in combination with the routine haploid induction in maize, will pave the way to pyramiding more stress tolerant alleles in elite lines/varieties on time.


Assuntos
Locos de Características Quantitativas , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Edição de Genes , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Zea mays/genética
5.
Plant Mol Biol ; 102(4-5): 359-372, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31848919

RESUMO

KEY MESSAGE: Protein degradation is essential in plant growth and development. The stability of Cullin3 substrate adaptor protein BPM1 is regulated by multiple environmental cues pointing on manifold control of targeted protein degradation. A small family of six MATH-BTB genes (BPM1-6) is described in Arabidopsis thaliana. BPM proteins are part of the Cullin E3 ubiquitin ligase complexes and are known to bind at least three families of transcription factors: ERF/AP2 class I, homeobox-leucine zipper and R2R3 MYB. By targeting these transcription factors for ubiquitination and subsequent proteasomal degradation, BPMs play an important role in plant flowering, seed development and abiotic stress response. In this study, we generated BPM1-overexpressing plants that showed an early flowering phenotype, resistance to abscisic acid and tolerance to osmotic stress. We analyzed BPM1-GFP protein stability and found that the protein has a high turnover rate and is degraded by the proteasome 26S in a Cullin-dependent manner. Finally, we found that BPM1 protein stability is environmentally conditioned. Darkness and salt stress triggered BPM1 degradation, whereas elevated temperature enhanced BPM1 stability and accumulation in planta.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Flores/fisiologia , Estresse Fisiológico , Fatores de Transcrição/fisiologia , Ácido Abscísico , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Plasmídeos/genética , Pólen/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteólise , Sementes/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
6.
Front Plant Sci ; 10: 1469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824527

RESUMO

MATH-BTB proteins are known to act as substrate-specific adaptors of CUL3-based E3 ligases in the ubiquitin proteasome pathway. Their BTB domain binds to CUL3 scaffold proteins and the less conserved MATH domain targets a highly diverse collection of substrate proteins to promote their ubiquitination and subsequent degradation. In plants, a significant expansion of the MATH-BTB family occurred in the grasses. Here, we report analysis of TaMAB2, a MATH-BTB protein transiently expressed at the onset of embryogenesis in wheat. Due to difficulties in studying its role in zygotes and early embryos, we have overexpressed TaMAB2 in Arabidopsis to generate gain-of-function mutants and to elucidate interaction partners and substrates. Overexpression plants showed severe growth defects as well as disorganization of microtubule bundles indicating that TaMAB2 interacts with substrates in Arabidopsis. In tobacco BY-2 cells, TaMAB2 showed a microtubule and ubiquitin-associated cytoplasmic localization pattern in form of foci. Its direct interaction with CUL3 suggests functions in targeting specific substrates for ubiquitin-dependent degradation. Although direct interactions with tubulin could not be confimed, tandem affinity purification of TaMAB2 interactors point towards cytoskeletal proteins including tubulin and actin as well as the translation initiation machinery. The idenification of various subunits of eucaryotic translation initiation factors eIF3 and eIF4 as TaMAB2 interactors indicate regulation of translation initiation as a major function during onset of embryogenesis in plants.

7.
Front Plant Sci ; 10: 613, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156676

RESUMO

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.), a plant species endemic to the east Adriatic coast, is used worldwide for production of the organic insecticide, pyrethrin. Most studies concerning Dalmatian pyrethrum have focused on its morphological and biochemical traits relevant for breeding. However, little is known about the chromosomal evolution and genome organization of this species. Our study aims are to identify, classify, and characterize repetitive DNA in the T. cinerariifolium genome using clustering analysis of a low coverage genomic dataset. Repetitive DNA represents about 71.63% of the genome. T. cinerariifolium exhibits linked 5S and 35S rDNA configuration (L-type). FISH reveals amplification of interstitial telomeric repeats (ITRs) in T. cinerariifolium. Of the three newly identified satellite DNA families, TcSAT1 and TcSAT2 are located subterminally on most of T. cinerariifolium chromosomes, while TcSAT3 family is located intercalary within the longer arm of two chromosome pairs. FISH reveals high levels of polymorphism of the TcSAT1 and TcSAT2 sites by comparative screening of 28 individuals. TcSAT2 is more variable than TcSAT1 regarding the number and position of FISH signals. Altogether, our data highlights the dynamic nature of DNA sequences associated with subtelomeres in T. cinerariifolium and suggests that subtelomeres represent one of the most dynamic and rapidly evolving regions in eukaryotic genomes.

8.
Sci Rep ; 6: 32196, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553690

RESUMO

Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/química , Sítios de Ligação , Núcleo Celular/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica de Plantas , Meristema/fisiologia , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas de Ligação a RNA/química
9.
Cell Rep ; 11(4): 516-26, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25892242

RESUMO

Polar transport of the phytohormone auxin throughout plants shapes morphogenesis and is subject to stringent and specific control. Here, we identify basic cellular activities connected to translational control of gene expression as sufficient to specify auxin-mediated development. Mutants in subunits of Arabidopsis Elongator, a protein complex modulating translational efficiency via maturation of tRNAs, exhibit defects in auxin-controlled developmental processes, associated with reduced abundance of PIN-formed (PIN) auxin transport proteins. Similar anomalies are observed upon interference with tRNA splicing by downregulation of RNA ligase (AtRNL), pointing to a general role of tRNA maturation in auxin signaling. Elongator Protein 6 (ELP6) and AtRNL expression patterns underline an involvement in adjusting PIN protein levels, whereas rescue of mutant defects by auxin indicates rate-limiting activities in auxin-controlled organogenesis. This emphasizes mechanisms in which auxin serves as a bottleneck for plant morphogenesis, translating common cellular activities into defined developmental readouts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Ligação a RNA/genética
10.
Naturwissenschaften ; 98(9): 763-72, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21833713

RESUMO

Reconstruction of the grapevine cultivation history has advanced tremendously during the last decade. Identification of grapevine cultivars by using microsatellite DNA markers has mostly become a routine. The parentage of several renowned grapevine cultivars, like Cabernet Sauvignon and Chardonnay, has been elucidated. However, the assembly of a complete grapevine genealogy is not yet possible because missing links might no longer be in cultivation or are even extinct. This problem could be overcome by analyzing ancient DNA from grapevine herbarium specimens and other historical remnants of once cultivated varieties. Here, we present the first successful genotyping of a grapevine herbarium specimen and the identification of the corresponding grapevine cultivar. Using a set of nine grapevine microsatellite markers, in combination with a whole genome amplification procedure, we found the 90-year-old Tribidrag herbarium specimen to display the same microsatellite profile as the popular American cultivar Zinfandel. This work, together with information from several historical documents, provides a new clue of Zinfandel cultivation in Croatia as early as the beginning of fifteenth century, under the native name Tribidrag. Moreover, it emphasizes substantial information potential of existing grapevine and other herbarium collections worldwide.


Assuntos
Genoma de Planta , Repetições de Microssatélites/genética , Vitis/genética , Técnicas de Genotipagem , Especificidade da Espécie , Vitis/classificação
11.
Plant J ; 51(4): 537-50, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17651372

RESUMO

Polar transport of the phytohormone auxin controls numerous growth responses in plants. Molecular characterization of auxin transport in Arabidopsis thaliana has provided important insights into the mechanisms underlying the regulation of auxin distribution. In particular, the control of subcellular localization and expression of PIN-type auxin efflux components appears to be fundamental for orchestrated distribution of the growth regulator throughout the entire plant body. Here we describe the identification of two Arabidopsis loci, MOP2 and MOP3 (for MODULATOR OF PIN), that are involved in control of the steady-state levels of PIN protein. Mutations in both loci result in defects in auxin distribution and polar auxin transport, and cause phenotypes consistent with a reduction of PIN protein levels. Genetic interaction between PIN2 and both MOP loci is suggestive of functional cross-talk, which is further substantiated by findings demonstrating that ectopic PIN up-regulation is compensated in the mop background. Thus, in addition to pathways that control PIN localization and transcription, MOP2 and MOP3 appear to be involved in fine-tuning of auxin distribution via post-transcriptional regulation of PIN expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Genes de Plantas/genética , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Northern Blotting , Regulação da Expressão Gênica de Plantas , Imuno-Histoquímica , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
Plant Cell ; 18(4): 852-66, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16531491

RESUMO

In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf venation network had a severely reduced complexity: incomplete loops, no tertiary or quaternary veins, and vascular islands. The leaf laminas were asymmetric and narrow because of a severely reduced cell number. We postulate that the imbalance between cell proliferation and cell differentiation and the altered auxin distribution in both trn mutants cause asymmetric leaf growth and aberrant venation patterning. TRN1 and TRN2 were epistatic to ASYMMETRIC LEAVES1 with respect to leaf asymmetry, consistent with their expression in the shoot apical meristem and leaf primordia. TRN1 codes for a large plant-specific protein with conserved domains also found in a variety of signaling proteins, whereas TRN2 encodes a transmembrane protein of the tetraspanin family whose phylogenetic tree is presented. Double mutant analysis showed that TRN1 and TRN2 act in the same pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/classificação , Sequência Conservada , Cotilédone/anatomia & histologia , Cotilédone/fisiologia , Primers do DNA , Homeostase , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Folhas de Planta/anatomia & histologia , Reação em Cadeia da Polimerase
13.
Nat Cell Biol ; 8(3): 249-56, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16489343

RESUMO

Root gravitropism describes the orientation of root growth along the gravity vector and is mediated by differential cell elongation in the root meristem. This response requires the coordinated, asymmetric distribution of the phytohormone auxin within the root meristem, and depends on the concerted activities of PIN proteins and AUX1 - members of the auxin transport pathway. Here, we show that intracellular trafficking and proteasome activity combine to control PIN2 degradation during root gravitropism. Following gravi-stimulation, proteasome-dependent variations in PIN2 localization and degradation at the upper and lower sides of the root result in asymmetric distribution of PIN2. Ubiquitination of PIN2 occurs in a proteasome-dependent manner, indicating that the proteasome is involved in the control of PIN2 turnover. Stabilization of PIN2 affects its abundance and distribution, and leads to defects in auxin distribution and gravitropic responses. We describe the effects of auxin on PIN2 localization and protein levels, indicating that redistribution of auxin during the gravitropic response may be involved in the regulation of PIN2 protein.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Gravitropismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Hidrólise , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico
14.
Bioessays ; 27(12): 1246-55, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299756

RESUMO

With the discovery of the phytohormone auxin in the late 1920s, it became possible to link the regulation of complex plant growth responses to a single biologically active compound. Among all the plant growth regulators characterised so far, only auxin appears to be actively transported throughout the plant to create complex variations in concentration patterns and flow directions over time. This stimulated interest in the specific mechanisms underlying auxin transport as key factors in plant growth responses. Research in the last decade revealed several genes involved in the controlled transport of auxin and greatly improved our understanding of the basic principles of auxin-mediated responses. We are at this point, however, only starting to understand the complex interplay and control of factors that ultimately underlie the observed spatiotemporal variations in auxin transport and thus mediate plant growth and environmental responses. This review highlights important findings that provide us with a framework of molecular players and potential regulatory mechanisms that should contribute to the formulation of a comprehensive dynamic model of spatiotemporal auxin distribution.


Assuntos
Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Transporte Biológico , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA