Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2823, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561349

RESUMO

Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aß pathology. PV-IN CIBOP in early stages of Aß pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Parvalbuminas/metabolismo , Proteômica , Proteoma/metabolismo , Interneurônios/metabolismo , Camundongos Transgênicos
2.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292756

RESUMO

One of the earliest pathophysiological perturbations in Alzheimer's Disease (AD) may arise from dysfunction of fast-spiking parvalbumin (PV) interneurons (PV-INs). Defining early protein-level (proteomic) alterations in PV-INs can provide key biological and translationally relevant insights. Here, we use cell-type-specific in vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state proteomes of PV interneurons. PV-INs exhibited proteomic signatures of high metabolic, mitochondrial, and translational activity, with over-representation of causally linked AD genetic risk factors. Analyses of bulk brain proteomes indicated strong correlations between PV-IN proteins with cognitive decline in humans, and with progressive neuropathology in humans and mouse models of Aß pathology. Furthermore, PV-IN-specific proteomes revealed unique signatures of increased mitochondrial and metabolic proteins, but decreased synaptic and mTOR signaling proteins in response to early Aß pathology. PV-specific changes were not apparent in whole-brain proteomes. These findings showcase the first native state PV-IN proteomes in mammalian brain, revealing a molecular basis for their unique vulnerabilities in AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA