Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000146

RESUMO

Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) are the two major neurodegenerative diseases with distinct clinical and neuropathological profiles. The aim of this report is to conduct a population-based investigation in well-characterized APP, PSEN1, PSEN2, MAPT, GRN, and C9orf72 mutation carriers/pedigrees from the north, the center, and the south of Italy. We retrospectively analyzed the data of 467 Italian individuals. We identified 21 different GRN mutations, 20 PSEN1, 11 MAPT, 9 PSEN2, and 4 APP. Moreover, we observed geographical variability in mutation frequencies by looking at each cohort of participants, and we observed a significant difference in age at onset among the genetic groups. Our study provides evidence that age at onset is influenced by the genetic group. Further work in identifying both genetic and environmental factors that modify the phenotypes in all groups is needed. Our study reveals Italian regional differences among the most relevant AD/FTD causative genes and emphasizes how the collaborative studies in rare diseases can provide new insights to expand knowledge on genetic/epigenetic modulators of age at onset.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Mutação , Proteínas tau , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Itália/epidemiologia , Demência Frontotemporal/genética , Demência Frontotemporal/epidemiologia , Demência Frontotemporal/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Proteínas tau/genética , Idade de Início , Proteína C9orf72/genética , Presenilina-2/genética , Estudos Retrospectivos , Precursor de Proteína beta-Amiloide/genética , Presenilina-1/genética , Progranulinas/genética , Adulto , Idoso de 80 Anos ou mais , Predisposição Genética para Doença
2.
Heliyon ; 10(11): e31624, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828303

RESUMO

The Forkhead box P2 (FOXP2) is an evolutionary conserved transcription factor involved in the maintenance of neuronal networks, implicated in language disorders. Some evidence suggests a possible link between FOXP2 genetic variability and frontotemporal dementia (FTD) pathology and related endophenotypes. To shed light on this issue, we analysed the association between single-nucleotide polymorphisms (SNPs) in FOXP2 and FTD in 113 patients and 223 healthy controls. In addition, we investigated SNPs in two putative targets of FOXP2, CNTNAP2, Contactin-associated protein-like 2 and PRNP, prion protein genes. Overall, 27 SNPs were selected by a tagging approach. FOXP2-rs17213159-C/T resulted associated with disease risk (OR = 2.16, P = 0.0004), as well as with age at onset and severity of dementia. Other FOXP2 markers were associated with semantic and phonological fluency scores, cognitive levels (MMSE) and neuropsychological tests. Associations with language, cognitive and brain atrophy measures were found with CNTNAP2 and PRNP genetic variability. Overall, although preliminary, results here presented suggest an influence of regulatory pathways centred on FOXP2 as a molecular background of FTD affecting neurological function of multiple brain areas.

3.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892250

RESUMO

Neurodegenerative diseases are progressive disorders that affect the central nervous system (CNS) and represent the major cause of premature death in the elderly. One of the possible determinants of neurodegeneration is the change in mitochondrial function and content. Altered levels of mitochondrial DNA copy number (mtDNA-CN) in biological fluids have been reported during both the early stages and progression of the diseases. In patients affected by neurodegenerative diseases, changes in mtDNA-CN levels appear to correlate with mitochondrial dysfunction, cognitive decline, disease progression, and ultimately therapeutic interventions. In this review, we report the main results published up to April 2024, regarding the evaluation of mtDNA-CN levels in blood samples from patients affected by Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The aim is to show a probable link between mtDNA-CN changes and neurodegenerative disorders. Understanding the causes underlying this association could provide useful information on the molecular mechanisms involved in neurodegeneration and offer the development of new diagnostic approaches and therapeutic interventions.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Mitocôndrias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA