Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(23): 9777-9791, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38780443

RESUMO

A ruthenium nitrosyl complex of formula [RuII(fluorene(C6)CH2O-terpy)(bipy)(NO)]3+ (AC) in which fluorene(C6) is the 9,9-dihexylfluorene, terpy the 2,2';6',2''-terpyridine, and bipy the 2,2'-bipyridine is presented with its related [RuII(MeO-terpy)(bipy)(NO)]3+ (C) and 9,9-dihexylfluorene 2-hydroxymethylfluorene (A) building blocks. The reference complex C undergoes NO release capabilities under irradiation at λ = 365 nm. The effect of the introduction of the fluorescent A antenna within the resulting AC complex is discussed both experimentally and theoretically. The importance of the encaging parameter defined as ϕAC·IAC, in which IAC is the quantity of light absorbed by AC and ϕAC the quantum yield of NO release is evidenced and found to be concentration dependent. The conditions of optimization of the antenna approach to maximize ϕAC·IAC are discussed. The crystal structure of [RuII(fluorene(C6)CH2O-terpy)(bipy)(NO2)](PF6), the last intermediate in the synthesis of AC is also presented.

2.
Inorg Chem ; 63(17): 7665-7677, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38623892

RESUMO

Two monometallic and three bimetallic ruthenium acetonitrile (RuMeCN) complexes are presented and fully characterized. All of them are built from the same skeleton [FTRu(bpy)(MeCN)]2+, in which FT is a fluorenyl-substituted terpyridine ligand and bpy is the 2,2'-bipyridine. The crystal structure of [FTRu(bpy)(MeCN)](PF6)2 is presented. A careful spectroscopic analysis allows establishing that these 5 RuMeCN complexes can be identified as the product of the photoreaction of 5 related RuNO complexes, investigated as efficient nitric oxide (NO) donors. Based on this set of complexes, the mechanism of the NO photorelease of the bimetallic complexes has been established through a complete investigation under irradiations performed at 365, 400, 455, and 490 nm wavelength. A two-step (A → B → C) kinetic model specially designed for this purpose provides a good description of the mechanism, with quantum yields of photorelease in the range 0.001-0.029, depending on the irradiation wavelength. In the first step of release, the quantum yields (ϕAB) are always found to be larger than those of the second step (ϕBC), at any irradiation wavelengths.

3.
Inorg Chem ; 62(49): 20349-20363, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994054

RESUMO

A fundamental challenge for phototriggered therapies is to obtain robust molecular frameworks that can withstand biological media. Photoactivatable nitric oxide (NO) releasing molecules (photoNORMs) based on ruthenium nitrosyl (RuNO) complexes are among the most studied systems due to several appealing features that make them attractive for therapeutic applications. Nevertheless, the propensity of the NO ligand to be attacked by nucleophiles frequently manifests as significant instability in water for this class of photoNORMs. Our approach to overcome this limitation involved enhancing the Ru-NO π-backbonding to lower the electrophilicity at the NO by replacing the commonly employed 2,2'-bipyridine (bpy) ligand by an anionic, electron-rich, acetylacetonate (acac). A versatile and convenient synthetic route is developed and applied for the preparation of a large library of RuNO photoNORMs with the general formula [RuNO(tpy)(acac)]2+ (tpy = 2,2':6',2″-terpyridine). A combined theoretical and experimental analysis of the Ru-NO bonding in these complexes is presented, supported by extensive single-crystal X-ray diffraction experiments and by topological analyses of the electron charge density by DFT. The enhanced π-back-bonding, systematically evidenced by several techniques, resulted in a remarkable stability in water for these complexes, where significant NO release efficiencies were recorded. We finally demonstrate the possibility of obtaining sophisticated water-stable multipolar NO-delivery platforms that can be activated in the near-IR region by two-photon absorption (TPA), as demonstrated for an octupolar complex with a TPA cross section of 1530 GM at λ = 800 nm and for which NO photorelease was demonstrated under TPA irradiation in aqueous media.

4.
Dalton Trans ; 52(48): 18177-18193, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997689

RESUMO

Ruthenium nitrosyl (RuNO) complexes continue to attract significant research interest due to several appealing features that make these photoactivatable nitric oxide (NO˙) donors attractive for applications in photoactivated chemotherapy. Interesting examples of molecular candidates capable of delivering cytotoxic concentrations of NO˙ in aqueous media have been discussed. Nevertheless, the question of whether most of these highly polar and relatively large molecules are efficiently incorporated by cells remains largely unanswered. In this paper, we present the synthesis and the chemical, photophysical and photochemical characterization of RuNO complexes functionalized with 17α-ethinylestradiol (EE), a semisynthetic steroidal hormone intended to act as a molecular Trojan horse for the targeted delivery of RuNO complexes. The discussion is centered around two main molecular targets, one containing EE (EE-Phtpy-RuNO) and a reference compound lacking this biological recognition fragment (Phtpy-RuNO). While both complexes displayed similar optical absorption profiles and NO˙ release efficiencies in aqueous media, important differences were found regarding their cellular uptake towards dermal fibroblasts, with EE-Phtpy-RuNO gratifyingly displaying a remarkable 10-fold increase in cellular uptake when compared to Phtpy-RuNO, thus demonstrating the potential drug-targeting capabilities of this biomimetic steroidal conjugate.


Assuntos
Óxido Nítrico , Rutênio , Óxido Nítrico/química , Rutênio/química , Água
5.
Dalton Trans ; 51(39): 14833-14841, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36169419

RESUMO

Since the discovery of the numerous physiological roles exhibited by nitric oxide (NO), ruthenium nitrosyl (RuNO) complexes have been regarded as one of the most promising NO donors, stable, well tolerated by the body and capable of releasing NO locally and quantitatively, under light irradiation. This release can be achieved by two-photon absorption (TPA) processes, which allow the irradiation to be performed in the near infrared domain, where light has its maximum depth of penetration in biological tissues. This review provides a short introduction on the biological properties of NO, on RuNO complexes with photo-releasing capabilities, and on the origin of TPA properties in molecules. Then, the RuNO complexes with TPA capabilities are thoroughly discussed either as monometallic or polymetallic species.


Assuntos
Rutênio , Óxido Nítrico , Doadores de Óxido Nítrico/farmacologia , Fótons
6.
Chemistry ; 28(62): e202201692, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35916438

RESUMO

One monometallic and three bimetallic ruthenium nitrosyl (RuNO) complexes are presented and fully characterized in reference to a parent monometallic complex of formula [FTRu(bpy)(NO)]3+ , where FT is a fluorenyl-substituted terpyridine ligand, and bpy the 2,2'-bipyridine. These new complexes are built with the new ligands FFT, TFT, TFFT, and TF-CC-TF (where an alkyne C≡C group is inserted between two fluorenes). The crystal structures of the bis-RuNO2 and bis-RuNO complexes built from the TFT ligand are presented. The evolution of the spectroscopic features (intensities and energies) along the series, at one-photon absorption (OPA) correlates well with the TD-DFT computations. A spectacular effect is observed at two-photon absorption (TPA) with a large enhancement of the molecular cross-section (σTPA ), in the bimetallic species. In the best case, σTPA is equal to 1523±98 GM at 700 nm, in the therapeutic window of transparency of biological tissues. All compounds are capable of releasing NO⋅ under irradiation, which leads to promising applications in TPA-based drug delivery.


Assuntos
Rutênio , Rutênio/química , Óxido Nítrico , Ligantes , Fótons , Teoria da Densidade Funcional
7.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 12): 1296-1298, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34925901

RESUMO

In the title compound, C19H23N5 2+·2Cl-·2H2O, the two pyridine side arms are not coplanar, with the terminal pyridine rings subtending a dihedral angle of 26.45 (6)°. In the crystal, hydrogen bonds, inter-molecular C-H⋯Cl contacts and a weak C-H⋯O inter-action connect the mol-ecule with neighbouring chloride counter-anions and lattice water mol-ecules. The crystal packing also features by π-π inter-actions with centroid-centroid distances of 3.4864 (12) and 3.5129 (13) Å.

8.
J Phys Chem Lett ; 11(16): 6487-6491, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32696645

RESUMO

We report herein a molecular engineering strategy based on the design of a multipolar ruthenium-nitrosyl (Ru-NO) complex with a three-branched architecture. The three Ru-NO units are introduced at the periphery of a highly π-delocalized truxene core bearing three terpyridine ligands. The two-photon absorption capabilities of the complex were investigated by the Z-scan technique. The strong electronic coupling among the individual arms gives rise to a very strong two-photon absorption response (δ800 nm ∼ 1600 GM), which corresponds to a 16-fold enhancement of the capability of a single-arm reference, thereby promoting an efficient light-driven NO release process in aqueous media.

9.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397237

RESUMO

The photorelease of nitric oxide (NO·) has been investigated in dimethylsulfoxide (DMSO) on two compounds of formula [Ru(R-tpy)(bpy)(NO)](PF6)3, in which bpy stands for 2,2'-bipyridine and R-tpy for the 4'-R-2,2':6',2″-terpyridine with R = H and MeOPh. It is observed that both complexes are extremely sensitive to traces of water, leading to an equilibrium between [Ru(NO)] and [Ru(NO2)]. The photoproducts of formula [Ru(R-tpy)(bpy)(DMSO)](PF6)2 are further subjected to a photoreaction leading to a reversible linkage isomerization between the stable Ru-DMSO(S) (sulfur linked) and the metastable Ru-DMSO(O) (oxygen linked) species. A set of 4 [Ru(R-tpy)(bpy)(DMSO)]2+ complexes (R = H, MeOPh, BrPh, NO2Ph) is investigated to characterize the ratio and mechanism of the isomerization which is tentatively related to the difference in absorbance between the Ru-DMSO(S) and Ru-DMSO(O) forms. In addition, the X-ray crystal structures of [Ru(tpy)(bpy)(NO)](PF6)3 and [Ru(MeOPh-tpy)(bpy)(DMSO(S))](PF6)2 are presented.


Assuntos
Complexos de Coordenação , Dimetil Sulfóxido/química , Processos Fotoquímicos , Piridinas , Rutênio/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Piridinas/síntese química , Piridinas/química
10.
Dalton Trans ; 49(10): 3138-3154, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32076692

RESUMO

The synthesis and behavior in water of a set of various cis(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) and trans(Cl,Cl)-[R-tpyRuCl2(NO)](PF6) (R = fluorenyl, phenyl, thiophenyl; tpy = 2,2':6',2''-terpyridine) complexes are presented. In any case, one chlorido ligand is substituted by a hydroxo ligand and the final species arises as a single trans(NO,OH) isomer, whatever the nature of the starting cis/trans(Cl,Cl) complexes. Six X-ray crystal structures are presented for cis(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (cis-3a), trans(Cl,Cl)-[thiophenyl-tpyRuCl2(NO)](PF6) (trans-3a), trans(NO,OH)-[phenyl-tpyRu(Cl)(OH)(NO)](PF6) (4a), trans(NO,OH)-[thiophenyl-tpyRu(Cl)(OH)(NO)](PF6) (4b), trans(NO,OEt)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5a), and trans(NO,OH)-[phenyl-tpyRu(Cl)(OEt)(NO)](PF6) (5b) compounds. The different cis/trans(Cl,Cl) complexes exhibit an intense low-lying transition in the λ = 330-390 nm range, which appears to be slightly blue-shifted after Cl → OH substitution. In water, both cis/trans(Cl,Cl) isomers are converted to a single trans(NO,OH) isomer in which one chlorido- is replaced by one hydroxo-ligand, which avoids tedious separation workout. The water stable trans(NO,OH)-species all release NO with quantum yields of 0.010 to 0.075 under irradiation at 365 nm. The properties are discussed with computational analysis performed within the framework of Density Functional Theory.

12.
Sci Rep ; 9(1): 4867, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890745

RESUMO

Antibiotic resistance is becoming a global scourge with 700,000 deaths each year and could cause up to 10 million deaths by 2050. As an example, Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. S. epidermidis can form biofilms, which contribute to its pathogenicity when present in intravascular devices. These staphylococci, embedded in the biofilm matrix, are resistant to methicillin, which had long been the recommended therapy and which has nowadays been replaced by less toxic and more stable therapeutic agents. Moreover, current reports indicate that 75 to 90% of Staphylococcus epidermidis isolates from nosocomial infections are methicillin-resistant strains. The challenge of successfully combating antibiotics resistance in biofilms requires the use of compounds with a controlled mode of action that can act in combination with antibiotics. Ruthenium nitrosyl complexes are potential systems for NO release triggered by light. The influence of trans(NO, OH)-[RuFT(Cl)(OH)NO](PF6) on Staphylococcus epidermidis resistant to methicillin is described. The results show a 50% decrease in cell viability in bacteria treated with low concentrations of NO. When combined with methicillin, this low dose of NO dramatically decreases bacterial resistance and makes bacteria 100-fold more sensitive to methicillin.


Assuntos
Biofilmes/efeitos dos fármacos , Resistência a Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Rutênio/química , Rutênio/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/patogenicidade
13.
Photochem Photobiol Sci ; 15(12): 1484-1491, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27805228

RESUMO

cis- and trans-(Cl,Cl)-[RuII(FT)Cl2(NO)](PF6) complexes show efficient NO photodelivery upon two-photon excitation in the NIR region. Moreover, cytotoxicity and phototoxicity studies provide evidence that these complexes are promising candidates as photoactivatable molecular tools for resection of malignancies.


Assuntos
Antineoplásicos/química , Raios Infravermelhos , Óxido Nítrico/metabolismo , Fototerapia
14.
Inorg Chem ; 55(9): 4117-23, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27054377

RESUMO

Various systems containing the [ML5NO] molecule, where M = Fe, Ru, ... and L = F, Cl, ..., exhibit switching under continuous light (CW) irradiation between the ground-state nitrosyl (GS), isonitrosyl (MSI), and side-on (MSII) configurations. The metastable populations, however, are often limited to a few percent. The [Ru(py)4Cl(NO)](PF6)2·(1)/2H2O system is thus a remarkable model compound as the GS to MSI transformation is nearly complete in a single crystal. A predominant two-step photon absorption process during GS to MSI switching under blue light is revealed by visible absorption spectroscopy, although a low concentration of the transient species hinders the determination of this process by the structural signature. During the depopulation of MSI, both two-step and direct processes are evidenced under red CW irradiation. Different intermediate visible spectra revealing transient species during GS to MSI and the reverse photochemical processes are discussed in relation to MSII properties.

15.
Inorg Chem ; 54(17): 8310-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26274397

RESUMO

The density functional theory calculations presented in this work allow the first rationalization of the full linkage photoisomerization mechanism of trans-[RuCl(NO)(py)4](2+), in both the forward and reverse directions. These mechanisms are consistent with the experimental data establishing that blue-light irradiation triggers the forward process, while red or IR photons trigger the reverse process. Characterization of the singlet and lowest triplet potential energy surfaces shows that, despite the unfavorable thermodynamic character of the forward process, the topologies of the surfaces and particularly some crucial surface crossings enable the isomerization. In the forward Ru-NO → Ru-ON direction, a sequential two-photon absorption mechanism is unraveled that involves a sideways-bonded metastable state. In contrast, in the reverse reaction, two mechanisms are proposed involving either one or two photons.

16.
Dalton Trans ; 43(33): 12721-33, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25011547

RESUMO

The 4'-(2-fluorenyl)-2,2':6',2''-terpyridine (FT) ligand and its cis(Cl,Cl)- and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) complexes have been synthesized. Both isomers were separated by HPLC and fully characterized by (1)H and (13)C NMR. The X-ray diffraction crystal structures were solved for FT (Pna21 space group, a = 34.960(4), b = 5.9306(7), c = 9.5911(10) Å), and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6)·MeOH (P1[combining macron] space group, a = 10.3340(5), b = 13.0961(6), c = 13.2279(6) Å, α = 72.680(2), ß = 70.488(2), γ = 67.090(2)°). Photo-release of NO˙ radicals occurs under irradiation at 405 nm, with a quantum yield of 0.31 and 0.10 for cis(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6) and trans(Cl,Cl)-[Ru(II)(FT)Cl2(NO)](PF6), respectively. This significant difference is likely due to the trans effect of Cl(-), which favors the photo-release. UV-visible spectroscopy and cyclic voltammetry indicate the formation of ruthenium(iii) species as photoproducts. A density functional theory (DFT) analysis provides a rationale for the understanding of the photo-physical properties, and allows relating the weakening of the Ru-NO bond, and finally the photo-dissociation, to HOMO → LUMO excitations.


Assuntos
Óxido Nítrico/análise , Processos Fotoquímicos , Piridinas/análise , Rutênio/análise , Cristalografia por Raios X , Espectroscopia Fotoeletrônica/métodos , Piridinas/química , Rutênio/química , Difração de Raios X
17.
Inorg Chem ; 51(14): 7492-501, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22757756

RESUMO

In mononitrosyl complexes of transition metals two long-lived metastable states corresponding to linkage isomers of the nitrosyl ligand can be induced by irradiation with appropriate wavelengths. Upon irradiation, the N-bound nitrosyl ligand (ground state, GS) turns into two different conformations: isonitrosyl O bound for the metastable state 1 (MS1) and a side-on nitrosyl conformation for the metastable state 2 (MS2). Structural and spectroscopic investigations on [RuCl(NO)py(4)](PF(6))(2)·1/2H(2)O (py = pyridine) reveal a nearly 100% conversion from GS to MS1. In order to identify the factors which lead to this outstanding photochromic response we study in this work the influence of counteranions, trans ligands to the NO and equatorial ligands on the conversion efficiency: [RuX(NO)py(4)]Y(2)·nH(2)O (X = Cl and Y = PF(6)(-) (1), BF(4)(-) (2), Br(-)(3), Cl(-) (4); X = Br and Y = PF(6)(-) (5), BF(4)(-) (6), Br(-)(7)) and [RuCl(NO)bpy(2)](PF(6))(2) (8), [RuCl(2)(NO)tpy](PF(6)) (9), and [Ru(H(2)O)(NO)bpy(2)](PF(6))(3) (10) (bpy = 2,2'-bipyridine; tpy = 2,2':6',2"-terpyridine). Structural and infrared spectroscopic investigations show that the shorter the distance between the counterion and the NO ligand the higher the population of the photoinduced metastable linkage isomers. DFT calculations have been performed to confirm the influence of the counterions. Additionally, we found that the lower the donating character of the ligand trans to NO the higher the photoconversion yield.


Assuntos
Compostos Nitrosos/química , Compostos Organometálicos/química , Rutênio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Processos Fotoquímicos , Teoria Quântica
18.
Acta Crystallogr C ; 67(Pt 12): m375-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22138912

RESUMO

The molecular geometry of the tetragonal crystal structure of the title compound, [Ru(NO(2))(2)(C(5)H(5)N)(4)]·2H(2)O, differs from that previously determined by powder diffraction [Schaniel et al. (2010). Phys. Chem. Chem. Phys. 12, 6171-6178]. In the [Ru(NO(2))(C(5)H(5)N)(4)] molecule, the Ru atom lies at the intersection of three twofold axes (Wyckoff position 8b). It is coordinated by four N atoms of the pyridine rings, as well as by two N atoms of N-nitrite groups. The last two N atoms are located on a twofold axis (Wyckoff position 16f). The O atoms of the water molecules are situated on a twofold axis (Wyckoff position 16e). Short intermolecular contacts are observed in the crystal structure, viz. N-O···OW and N-O···H-OW contacts between nitrite and water, and weak C-H···OW hydrogen bonds between pyridine and water. Thus, the intercalated water molecules act as bridges connecting the trans-[Ru(NO(2))(2)(py)(4)] molecules into a three-dimensional network.

19.
Dalton Trans ; 40(11): 2480-5, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21290082

RESUMO

Films and monoliths containing the spin crossover complex [Fe(Htrz)(2)(trz)](BF(4)) (trz = 1,2,4-triazole) as nanoparticles have been obtained. The dispersion and consecutive inclusion of the Fe complex in a silica matrix prepared from tetramethoxysilane or tetraethoxysilane afford monoliths or films with a violet colour at room temperature, which turns white above 380 K. This change of colour is reversible. This thermochromic behaviour has been characterized by measuring the magnetic properties together with thermogravimetric studies and Raman spectroscopy, the result of which all demonstrate that both films and monoliths undergo a spin crossover. Microscopy studies confirm the occurrence of the Fe complex as nanoparticles, in both the monoliths and the films. The facile synthesis of these materials as nanoparticles in transparent films should open the possibility of the synthesis of high quality films.

20.
Acta Crystallogr B ; 65(Pt 5): 612-23, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19767684

RESUMO

Structure analysis of ground state (GS) and two light-induced (SI and SII) metastable linkage NO isomers of [Ru(py)4Cl(NO)](PF6)2.0.5H2O is presented. Illumination of the crystal by a laser with lambda = 473 nm at T = 80 K transfers around 92% of the NO ligands from Ru-N-O into the isomeric configuration Ru-O-N (SI). A subsequent irradiation with lambda = 980 nm generates about 48% of the side-on configuration Ru<(N)(O) (SII). Heating to temperatures above 200 K or irradiation with light in the red spectral range transfers both metastable isomers reversibly back to the GS. Photodifference maps clearly show the N-O configurations for both isomers and they could be used to find a proper starting model for subsequent refinements. Both metastable isomers have slightly but significantly different cell parameters with respect to GS. The main structural changes besides the Ru-O-N and RU<(N)(O) linkage are shortenings of the trans Ru-Cl bonds and the equatorial Ru-N bonds. The experimental results are compared with solid-state calculations based on density functional theory (DFT), which reproduce the observed structures with high accuracy concerning bond lengths and angles. The problem of how the different occupancies of SI and GS could affect refinement results was solved by a simulation procedure using the DFT data as starting values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA