Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 327, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658826

RESUMO

Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.


Assuntos
Oomicetos , Doenças das Plantas , Vitis , Oomicetos/patogenicidade , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Vitis/genética , Virulência , Evolução Biológica , Interações Hospedeiro-Patógeno
2.
Cells ; 12(16)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37626886

RESUMO

Breast cancer (BC) brain metastases (BCBM) is a severe condition frequently occurring in the triple-negative subtype. The study of BCBM pathogenesis and treatment has been hampered by the difficulty in establishing a reliable animal model that faithfully recapitulates the preferential formation of brain metastases. The injection of BC cells in the carotid artery of mice has been proposed but the procedure is challenging, with the metastatic pattern being scarcely characterized. In this work, we thoroughly describe an improved procedure, highlighting the tricks and challenges of the process, and providing a characterization of the brain and peripheral metastatic pattern at the cellular and molecular level. Triple-negative BC (4T1) cells were inoculated in the common carotid artery of BALB/c mice. Brains and peripheral organs were harvested at 7-14 days for the histological characterization of the metastases' pattern and the immunofluorescence analysis of specific markers. With our surgical procedure, both mouse death and procedure-associated weight loss were negligible. Brain metastases mostly occurred in the hippocampus, while sparse peripheral lesions were only detected in the lungs. Brain-colonizing BC cells presented proliferative (Ki-67) and epithelial (pan-cytokeratin and tomato lectin) features, which account for metastases' establishment. The presented surgical approach constitutes an important and reliable tool for BCBM studies.


Assuntos
Neoplasias Encefálicas , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Artéria Carótida Primitiva , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Cancers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37568789

RESUMO

Triple-negative breast cancer (TNBC) is a devastating BC subtype. Its aggressiveness, allied to the lack of well-defined molecular targets, usually culminates in the appearance of metastases that account for poor prognosis, particularly when they develop in the brain. Nevertheless, TNBC has been associated with epidermal growth factor receptor (EGFR) overexpression, leading to downstream phosphoinositide 3-kinase (PI3K) signaling activation. We aimed to unravel novel drug candidates for TNBC treatment based on EGFR and/or PI3K inhibition. Using a highly metastatic TNBC cell line with brain tropism (MDA-MB-231 Br4) and a library of 27 drug candidates in silico predicted to inhibit EGFR, PI3K, or EGFR plus PI3K, and to cross the blood-brain barrier, we evaluated the effects on cell viability. The half maximal inhibitory concentration (IC50) of the most cytotoxic ones was established, and cell cycle and death, as well as migration and EGFR pathway intervenient, were further evaluated. Two dual inhibitors emerged as the most promising drugs, with the ability to modulate cell cycle, death, migration and proliferation, morphology, and PI3K/AKT cascade players such as myocyte enhancer factor 2C (MEF2C) and forkhead box P1 (FOXP1). This work revealed EGFR/PI3K dual inhibitors as strong candidates to tackle brain metastatic TNBC cells.

4.
Methods Mol Biol ; 2604: 237-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773238

RESUMO

Signaling molecules are crucial to perceive and translate intra- and extracellular cues. Phosphoinositides and the proteins responsible for their biosynthesis (e.g., lipid kinases) are known to influence the (re)organization of cytoskeletal elements, namely, through interaction with actin and actin-binding proteins. Here we describe methods to functionally characterize lipid kinases and their phosphoinositide metabolites in relation to actin dynamics. These methods include GFP-tagged protein expression followed by time-resolved live imaging and quantitative image analysis. When combined with biochemical and interaction studies, these methods can be used to correlate signaling with actin dynamics, microfilament assembly, and intracellular trafficking, linking structure and function.


Assuntos
Actinas , Tubo Polínico , Actinas/metabolismo , Tubo Polínico/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Fosfolipídeos/metabolismo
5.
Sci Rep ; 12(1): 20794, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456634

RESUMO

Plasmopara viticola, an obligate biotrophic oomycete, is the causal agent of one of the most harmful grapevine diseases, downy mildew. Within this pathosystem, much information is gathered on the host, as characterization of pathogenicity and infection strategy of a biotrophic pathogen is quite challenging. Molecular insights into P. viticola development and pathogenicity are just beginning to be uncovered, mainly by transcriptomic studies. Plasmopara viticola proteome and secretome were only predicted based on transcriptome data. In this study, we have identified the in-planta proteome of P. viticola during infection of a susceptible ('Trincadeira') and a Rpv3-mediated resistance ('Regent') grapevine cultivar. Four hundred and twenty P. viticola proteins were identified on a label-free mass spectrometry-based approach of the apoplastic fluid of grapevine leaves. Overall, our study suggests that, in the compatible interaction, P. viticola manipulates salicylic-acid pathway and isoprenoid biosynthesis to enhance plant colonization. Furthermore, during the incompatible interaction, development-associated proteins increased while oxidoreductases protect P. viticola from ROS-associated plant defence mechanism. Up to our knowledge this is the first in-planta proteome characterization of this biotrophic pathogen, thus this study will open new insights into our understanding of this pathogen colonization strategy of both susceptible and Rpv3-mediated resistance grapevine genotypes.


Assuntos
Oomicetos , Proteoma , Transcriptoma , Espectrometria de Massas , Resolução de Problemas
6.
Physiol Plant ; 174(5): e13771, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36053855

RESUMO

Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.


Assuntos
Oomicetos , Vitis , Transcriptoma , Resistência à Doença/genética , Metilação , Epigênese Genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Oomicetos/genética , Vitis/genética , Vitis/metabolismo , Genótipo
7.
Biomedicines ; 10(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009536

RESUMO

Among breast cancer (BC) patients, 15-25% develop BC brain metastases (BCBM), a severe condition due to the limited therapeutic options, which points to the need for preventive strategies. We aimed to find a drug able to boost blood-brain barrier (BBB) properties and prevent BC cells (BCCs) extravasation, among PI3K, HSP90, and EGFR inhibitors and approved drugs. We used BCCs (4T1) and BBB endothelial cells (b.End5) to identify molecules with toxicity to 4T1 cells and safe for b.End5 cells. Moreover, we used those cells in mixed cultures to perform a high-throughput microscopy screening of drugs' ability to ameliorate BBB properties and prevent BCCs adhesion and migration across the endothelium, as well as to analyse miRNAs expression and release profiles. KW-2478, buparlisib, and minocycline hydrochloride (MH) promoted maximal expression of the junctional protein ß-catenin and induced 4T1 cells nucleus changes. Buparlisib and MH further decreased 4T1 adhesion. MH was the most promising in preventing 4T1 migration and BBB disruption, tumour and endothelial cytoskeleton-associated proteins modifications, and miRNA deregulation. Our data revealed MH's ability to improve BBB properties, while compromising BCCs viability and interaction with BBB endothelial cells, besides restoring miRNAs' homeostasis, paving the way for MH repurposing for BCBM prevention.

8.
Plants (Basel) ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161285

RESUMO

Holm oak is a key tree species in Mediterranean ecosystems, whose populations have been increasingly threatened by oak decline syndrome, a disease caused by the combined action of Phytophthora cinnamomi and abiotic stresses. The aim of the present study was to produce holm oak plants that overexpress the Ginkbilobin-2 homologous domain gene (Cast_Gnk2-like) that it is known to possess antifungal properties. Proembryogenic masses (PEMs) isolated from four embryogenic lines (Q8, E2, Q10-16 and E00) were used as target explants. PEMs were co-cultured for 5 days with Agrobacterium EHA105pGnk2 and then cultured on selective medium containing kanamycin (kan) and carbenicillin. After 14 weeks on selective medium, the transformation events were observed in somatic embryos of lines Q8 and E2 and a total of 4 transgenic lines were achieved. The presence of the Cast_Gnk2-like gene on transgenic embryos was verified by PCR, and the number of transgene copies and gene expression was estimated by qPCR. Transgenic plants were obtained from all transgenic lines after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In an in vitro tolerance assay with the pathogen P. cinnamomi, we observed that transgenic plants were able to survive longer than wild type.

9.
Plants (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616139

RESUMO

In temperate forests, the roots of various tree species are colonized by ectomycorrhizal fungi, which have a key role in the nitrogen nutrition of their hosts. However, not much is known about the molecular mechanisms related to nitrogen metabolism in ectomycorrhizal plants. This study aimed to evaluate the nitrogen metabolic response of oak plants when inoculated with the ectomycorrhizal fungus Pisolithus tinctorius. The expression of candidate genes encoding proteins involved in nitrogen uptake and assimilation was investigated in ectomycorrhizal roots. We found that three oak ammonium transporters were over-expressed in root tissues after inoculation, while the expression of amino acid transporters was not modified, suggesting that inorganic nitrogen is the main form of nitrogen transferred by the symbiotic fungus into the roots of the host plant. Analysis by heterologous complementation of a yeast mutant defective in ammonium uptake and GFP subcellular protein localization clearly confirmed that two of these genes encode functional ammonium transporters. Structural similarities between the proteins encoded by these ectomycorrhizal upregulated ammonium transporters, and a well-characterized ammonium transporter from E. coli, suggest a similar transport mechanism, involving deprotonation of NH4+, followed by diffusion of uncharged NH3 into the cytosol. This view is supported by the lack of induction of NH4+ detoxifying mechanisms, such as the GS/GOGAT pathway, in the oak mycorrhizal roots.

10.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209088

RESUMO

Breast cancer (BC) brain metastases is a life-threatening condition to which accounts the poor understanding of BC cells' (BCCs) extravasation into the brain, precluding the development of preventive strategies. Thus, we aimed to unravel the players involved in the interaction between BCCs and blood-brain barrier (BBB) endothelial cells underlying BBB alterations and the transendothelial migration of malignant cells. We used brain microvascular endothelial cells (BMECs) as a BBB in vitro model, under conditions mimicking shear stress to improve in vivo-like BBB features. Mixed cultures were performed by the addition of fluorescently labelled BCCs to distinguish individual cell populations. BCC-BMEC interaction compromised BBB integrity, as revealed by junctional proteins (ß-catenin and zonula occludens-1) disruption and caveolae (caveolin-1) increase, reflecting paracellular and transcellular hyperpermeability, respectively. Both BMECs and BCCs presented alterations in the expression pattern of connexin 43, suggesting the involvement of the gap junction protein. Myosin light chain kinase and phosphorylated myosin light chain were upregulated, revealing the involvement of the endothelial cytoskeleton in the extravasation process. ß4-Integrin and focal adhesion kinase were colocalised in malignant cells, reflecting molecular interaction. Moreover, BCCs exhibited invadopodia, attesting migratory properties. Collectively, hub players involved in BC brain metastases formation were unveiled, disclosing possible therapeutic targets for metastases prevention.


Assuntos
Barreira Hematoencefálica/citologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Redes Reguladoras de Genes , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Caveolina 1/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Conexina 43/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosforilação , Resistência ao Cisalhamento , Migração Transendotelial e Transepitelial , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/metabolismo
11.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069135

RESUMO

Triple negative breast cancer presents higher mortality and poorer survival rates than other breast cancer (BC) types, due to the proneness to brain metastases formation, which are usually diagnosed at advanced stages. Therefore, the discovery of BC brain metastases (BCBM) biomarkers appears pivotal for a timely intervention. With this work, we aimed to disclose microRNAs (miRNAs) and extracellular vesicles (EVs) in the circulation as biomarkers of BCBM formation. Using a BCBM animal model, we analyzed EVs in plasma by nanoparticle tracking analysis and ascertained their blood-brain barrier (BBB) origin by flow cytometry. We further evaluated circulating miRNAs by RT-qPCR and their brain expression by in situ hybridization. In parallel, a cellular model of BCBM formation, combining triple negative BC cells and BBB endothelial cells, was used to differentiate the origin of biomarkers. Established metastases were associated with an increased content of circulating EVs, particularly of BBB origin. Interestingly, deregulated miRNAs in the circulation were observed prior to BCBM detection, and their brain origin was suggested by matching alterations in brain parenchyma. In vitro studies indicated that miR-194-5p and miR-205-5p are expressed and released by BC cells, endothelial cells and during their interaction. These results highlight miRNAs and EVs as biomarkers of BCBM in early and advanced stages, respectively.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , MicroRNA Circulante/sangue , Vesículas Extracelulares/patologia , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/secundário , Neoplasias da Mama/genética , Linhagem Celular Tumoral , MicroRNA Circulante/genética , Endotélio Vascular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancers (Basel) ; 13(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671551

RESUMO

With breast cancer (BC) therapy improvements, the appearance of brain metastases has been increasing, representing a life-threatening condition. Brain metastasis formation involves BC cell (BCC) extravasation across the blood-brain barrier (BBB) and brain colonization by unclear mechanisms. We aimed to disclose the actors involved in BC brain metastasis formation, focusing on BCCs' phenotype, growth factor expression, and signaling pathway activation, correlating with BBB alterations and intercellular communication. Hippocampi of female mice inoculated with 4T1 BCCs were examined over time by hematoxylin-eosin, immunohistochemistry and immunofluorescence. Well-established metastases were observed at seven days, increasing thereafter. BCCs entering brain parenchyma presented mesenchymal, migratory, and proliferative features; however, with time, they increasingly expressed epithelial markers, reflecting a mesenchymal-epithelial transition. BCCs also expressed platelet-derived growth factor-B, ß4 integrin, and focal adhesion kinase, suggesting autocrine and/or paracrine regulation with adhesion signaling activation, while balance between Rac1 and RhoA was associated with the motility status. Intercellular communication via gap junctions was clear among BCCs, and between BCCs and endothelial cells. Thrombin accumulation, junctional protein impairment, and vesicular proteins increase reflect BBB alterations related with extravasation. Expression of plasmalemma vesicle-associated protein was increased in BCCs, along with augmented vascularization, whereas pericyte contraction indicated mural cells' activation. Our results provide further understanding of BC brain metastasis formation, disclosing potential therapeutic targets.

13.
Cells ; 10(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673112

RESUMO

Myocyte enhancer factor 2C (MEF2C) is increasingly expressed in mice along with breast cancer brain metastases (BCBM) development. We aim to ascertain MEF2C expression in human BCBM, establish the relationship with disease severity, disclose the involvement of vascular endothelial growth factor receptor-2 (VEGFR-2) and ß-catenin, also known as KDR and CTNNB1, respectively, and investigate if matched primary tumors express the protein. We studied resected BCBM for the expression of MEF2C, VEGFR-2, and ß-catenin, as well as proliferation (Ki-67) and epithelial (pan Cytokeratin) markers, and related experimental and clinical data. MEF2C expression was further assessed in matched primary tumors and non-BCBM samples used as controls. MEF2C expression was observed in BCBM, but not in controls, and was categorized into three phenotypes (P): P1, with extranuclear location; P2, with extranuclear and nuclear staining, and P3, with nuclear location. Nuclear translocation increased with metastases extension and Ki-67-positive cells number. P1 was associated with higher VEFGR-2 plasma membrane immunoreactivity, whereas P2 and P3 were accompanied by protein dislocation. P1 was accompanied by ß-catenin membrane expression, while P2 and P3 exhibited ß-catenin nuclear translocation. Primary BC samples expressed MEF2C in mammary ducts and scattered cells in the parenchyma. MEF2C emerges as a player in BCBM associated with disease severity and VEGFR-2 and ß-catenin signaling.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/patologia , Fatores de Transcrição MEF2/metabolismo , Células Musculares/metabolismo , Metástase Neoplásica/patologia , Adulto , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Fatores de Transcrição MEF2/genética , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo
14.
Front Plant Sci ; 12: 628697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659016

RESUMO

Allene oxide synthase (AOS) is a key enzyme of the jasmonic acid (JA) signaling pathway. The AOS gene was previously found to be upregulated in an Asian chestnut species resistant to infection by the oomycete Phytophthora cinnamomi (Castanea crenata), while lower expression values were detected in the susceptible European chestnut (Castanea sativa). Here, we report a genetic and functional characterization of the C. crenata AOS (CcAOS) upon its heterologous gene expression in a susceptible ecotype of Arabidopsis thaliana, which contains a single AOS gene. It was found that Arabidopsis plants expressing CcAOS delay pathogen progression and exhibit more vigorous growth in its presence. They also show upregulation of jasmonic acid and salicylic acid-related genes. As in its native species, heterologous CcAOS localized to plastids, as revealed by confocal imaging of the CcAOS-eGFP fusion protein in transgenic Arabidopsis roots. This observation was confirmed upon transient expression in Nicotiana benthamiana leaf epidermal cells. To further confirm a specific role of CcAOS in the defense mechanism against the pathogen, we performed crosses between transgenic CcAOS plants and an infertile Arabidopsis AOS knockout mutant line. It was found that plants expressing CcAOS exhibit normal growth, remain infertile but are significantly more tolerant to the pathogen than wild type plants. Together, our results indicate that CcAOS is an important player in plant defense responses against oomycete infection and that its expression in susceptible varieties may be a valuable tool to mitigate biotic stress responses.

15.
Front Cell Dev Biol ; 8: 337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596234

RESUMO

Here, biophysical properties of membranes enriched in three metabolically related sterols are analyzed both in vitro and in vivo. Unlike cholesterol and ergosterol, the common metabolic precursor zymosterol is unable to induce the formation of a liquid ordered (l o) phase in model lipid membranes and can easily accommodate in a gel phase. As a result, Zym has a marginal ability to modulate the passive membrane permeability of lipid vesicles with different compositions, contrary to cholesterol and ergosterol. Using fluorescence-lifetime imaging microscopy of an aminostyryl dye in living mammalian and yeast cells we established a close parallel between sterol-dependent membrane biophysical properties in vivo and in vitro. This approach unraveled fundamental differences in yeast and mammalian plasma membrane organization. It is often suggested that, in eukaryotes, areas that are sterol-enriched are also rich in sphingolipids, constituting highly ordered membrane regions. Our results support that while cholesterol is able to interact with saturated lipids, ergosterol seems to interact preferentially with monounsaturated phosphatidylcholines. Taken together, we show that different eukaryotic kingdoms developed unique solutions for the formation of a sterol-rich plasma membrane, a common evolutionary trait that accounts for sterol structural diversity.

16.
Mol Oncol ; 14(3): 520-538, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31930767

RESUMO

Breast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined. Here, we used a mouse model of BCBM and next-generation sequencing (NGS) to establish the alterations in circulating miRNAs during brain metastasis formation and development. We further performed bioinformatics analysis to identify their targets with relevance in the metastatic process. We additionally analyzed human resected brain metastasis samples of breast cancer patients for target expression validation. Breast cancer cells were injected in the carotid artery of mice to preferentially induce metastasis in the brain, and samples were collected at different timepoints (5 h, 3, 7, and 10 days) to follow metastasis development in the brain and in peripheral organs. Metastases were detected from 7 days onwards, mainly in the brain. NGS revealed a deregulation of circulating miRNA profile during BCBM progression, rising from 18% at 3 days to 30% at 10 days following malignant cells' injection. Work was focused on those altered prior to metastasis detection, among which were miR-802-5p and miR-194-5p, whose downregulation was validated by qPCR. Using targetscan and diana tools, the transcription factor myocyte enhancer factor 2C (MEF2C) was identified as a target for both miRNAs, and its expression was increasingly observed in malignant cells along brain metastasis development. Its upregulation was also observed in peritumoral astrocytes pointing to a role of MEF2C in the crosstalk between tumor cells and astrocytes. MEF2C expression was also observed in human BCBM, validating the observation in mouse. Collectively, downregulation of circulating miR-802-5p and miR-194-5p appears as a precocious event in BCBM and MEF2C emerges as a new player in brain metastasis development.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias Mamárias Animais/sangue , MicroRNAs/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Biologia Computacional , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/secundário , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Plant Physiol Biochem ; 144: 157-165, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31568958

RESUMO

Ectomycorrhizas have been reported to increase plant tolerance to drought. However, the mechanisms involved are not yet fully understood. Membranes are the first targets of degradation during drought, and growing evidences support a role for membrane lipids in plant tolerance and adaptation to drought. We have previously shown that improved tolerance of ectomycorrhizal oak plants to drought could be related to leaf membrane lipid metabolism, namely through an increased ability to sustain fatty acid content and composition, indicative of a higher membrane stability under stress. Here, we analysed in deeper detail the modulation of leaf lipid metabolism in oak plants mycorrhized with Pisolithus tinctorius and subjected to drought stress. Results show that mycorrhizal plants show patterns associated with water deficit tolerance, like a higher content of chloroplast lipids, whose levels are maintained upon drought stress. Likewise, mycorrhizal plants show increased levels of unsaturated fatty acids in the chloroplast phosphatidylglycerol lipid fraction. As a common response to drought, the digalactosyldiacyloglycerol/monogalactosyldiacyloglycerol ratio increased in the non-mycorrhizal plants, but not in the mycorrhizal plants, associated to smaller alterations in the expression of galactolipid metabolism genes, indicative of a higher drought tolerance. Under drought, inoculated plants showed increased expression of genes involved in neutral lipids biosynthesis, which could be related to an increased ability to tolerate drought stress. Overall, results from this study provide evidences of the involvement of lipid metabolism in the response of ectomycorrhizal plants to water deficit and point to an increased ability to maintain a stable chloroplast membrane functional integrity under stress.


Assuntos
Cloroplastos/fisiologia , Secas , Micorrizas/fisiologia , Quercus/fisiologia , Cloroplastos/metabolismo , Quercus/metabolismo , Simbiose/fisiologia
18.
Sci Rep ; 9(1): 6731, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31019195

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

19.
New Phytol ; 222(3): 1434-1446, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30628082

RESUMO

Diacylglycerol kinases (DGKs) play a major role in the production of phosphatidic acid (PtdOH) and were implicated in endomembrane trafficking and signalling cascades. In plants, the role of DGKs is less clear, as PtdOH seems to arise mostly from phospholipase D activity. Here, we investigated the function of the Arabidopsis gene encoding DGK4, which is highly expressed in pollen. In vitro, pollen tubes from homozygous dgk4 plants showed normal morphology, but reduced growth rate and altered stiffness and adhesion properties (revealed by atomic force microscopy). In vivo, dgk4 pollen was able to fertilize wild-type ovules, but self-pollination in dgk4 plants led to fewer seeds and shorter siliques. Phenotypic analysis revealed that the dgk4 mutation affects not only the male germ line but also the vegetative tissue. DGK4-green fluorescent protein fusion imaging revealed a cytosolic localization with a slightly higher signal in the subapical or apical region. dgk4 pollen tubes were found to exhibit perturbations in membrane recycling, and lipid analysis revealed a minor increase of PtdOH concomitant with decreased phosphatidylcholine, compared with wild-type. In vitro, DGK4 was found to exhibit kinase and guanylyl cyclase activity. Quantitative PCR data revealed downregulation of genes related to actin dynamics and phosphoinositide metabolism in mutant pollen, but upregulation of the DGK6 isoform. Altogether, these results are discussed considering a role of DGK4 in signalling cross-talk.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Diacilglicerol Quinase/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Adesividade , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Diacilglicerol Quinase/genética , Módulo de Elasticidade , Endocitose , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Fenótipo , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo
20.
Nat Plants ; 4(11): 861-862, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30390077
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA