RESUMO
Understanding dopant diffusion within organic and polymeric semiconductors is of great importance toward the development of organic photovoltaic and electronic devices, many of which require layered structures with controlled doping profiles (e.g., p-n and p-i-n structures). The current paper demonstrates a new method to determine the diffusion and permeability coefficients for dopant diffusion within polymeric and small-molecule organic semiconductors using attenuated total reflectance infrared (ATR-IR) spectroscopy and taking advantage of the intense IR-active vibrational bands created when dopants such as iodine accept charge from a semiconducting polymer to generate polaronic species. The diffusion and permeability coefficients for iodine within poly(3-hexylthiophene) (P3HT) are determined to be 2.5×10(-11)±1.2×10(-11) cm2/s and 2.4×10(-8)±1.2×10(-8) cm2/s·atm, respectively. The approach is applied to P3HT/PCBM (1:1 mass ratio) films, and the diffusion and permeability coefficients through these composite films are determined to be 7.8×10(-11)±2.8×10(-11) cm2/s and 4.8×10(-8)±1.3×10(-8) cm2/s·atm, respectively. Finally, the approach is extended to determining iodine diffusion within the polycrystalline semiconductor tetraphenylporphyrin (TPP) in a bilayer film with P3HT, and the diffusion coefficient of iodine through TPP is determined to be 7.1×10(-14)±1.1×10(-14) cm2/s. Although the current paper determines diffusion and permeability for the dopant iodine, this approach should be applicable to a wide array of dopants and polymeric and small-molecule semiconductors of interest in photovoltaic and electronic applications.
RESUMO
Computational and experimental studies have been performed to investigate the photostability of a series of 6,13-bis(arylalkynyl)-substituted pentacenes in the presence of oxygen. These studies indicate that photostabilization occurs through a selective LUMO orbital stabilization as has been seen previously for 6,13-bis(triisopropylsilylethynyl)pentacene. Marcus theory analysis suggests that the difference in vibrational reorganization energies across all compounds is small and that the thermodynamic driving force for forward electron transfer is primarily responsible for the observed photostabilization.
RESUMO
Organic/inorganic core shell nanoparticles have been synthesized using high K TiO(2) as the core nanoparticle, and polystyrene as the shell. This material is easy to process and forms transparent continuous thin films, which exhibit a dielectric constant enhancement of over 3 times that of bulk polystyrene. This new dielectric material has been incorporated into capacitors and thin film transistors (TFTs). Mobilities approaching 0.2 cm(2)/V.s have been measured for pentacene TFTs incorporating the new TiO(2) polystyrene nanostructured gate dielectric, indicating good surface properties for pentacene film growth. This novel strategy for generating high K flexible gate dielectrics will be of value in improving organic and flexible electronic device performance.
Assuntos
Membranas Artificiais , Nanoestruturas/química , Poliestirenos/química , Titânio/química , Eletrônica , Estrutura Molecular , Tamanho da Partícula , Poliestirenos/síntese química , Propriedades de SuperfícieRESUMO
A novel three-component condensation followed by a crystallization-induced asymmetric transformation is used to build this key substance P inhibitor intermediate in a short synthetic sequence.