Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(9): 2459-2468, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694455

RESUMO

Subnanometer clusters with precise atom numbers hold immense potential for applications in catalysis, as single atoms can significantly impact catalytic properties. Typically, inorganic clusters are produced using batch processes with high dilutions, making the scale-up of these processes time-consuming and its reproducibility challenging. While continuous-flow systems have been employed for organic synthesis and, more recently, nanoparticle preparation, these approaches have only rarely been applied to cluster synthesis. In a flexible, continuous flow synthesis platform, we integrate multiple continuous stirred tank reactors (CSTR) into a cascade to synthesize clusters with a precise number of atoms, demonstrating the potential of this approach for atom precise cluster synthesis and expanding the application of continuous-flow systems beyond organic synthesis.

2.
Microsc Microanal ; : 1-9, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644630

RESUMO

The world of environmental microscopy provides the possibility to study and analyze transformations and reactions during realistic conditions to understand the processes better. We report on the design and development of a metal-organic chemical vapor deposition (MOCVD) system integrated with an environmental transmission electron microscope intended for real-time investigations of crystal growth. We demonstrate methods for achieving a wide range of precisely controlled concentrations of precursor gas at the sample, as well as for calibrating the sample partial pressure using the pressure measured elsewhere in the microscope column. The influences of elevated temperature and reactive gas within the pole-piece gap are evaluated with respect to imaging and spectroscopy. We show that X-ray energy-dispersive spectroscopy can be strongly affected by temperatures beyond 500$^{\circ }$C, while the spatial resolution is largely unaffected by heat and microscope pressure for the relevant conditions. Finally, the influence of the electron beam on the investigated processes is discussed. With this work, we aim to provide crucial input in the development of advanced in situ electron microscopy systems for studies of complex reactions in real time under realistic conditions, for instance as used during formation of semiconductor crystals.

3.
ACS Nanosci Au ; 2(1): 49-56, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37101516

RESUMO

With the increased demand for controlled deterministic growth of III-V semiconductors at the nanoscale, the impact and interest of understanding defect formation and crystal structure switching becomes increasingly important. Vapor-liquid-solid (VLS) growth of semiconductor nanocrystals is an important mechanism for controlling and studying the formation of individual crystal layers and stacking defects. Using in situ studies, combining atomic resolution of transmission electron microscopy and controlled VLS crystal growth using metal organic chemical vapor deposition, we investigate the simplest achievable change in atomic layer stacking-single twinned layers formed in GaAs. Using Au-assisted GaAs nanowires of various diameters, we study the formation of individual layers with atomic resolution to reveal the growth difference in forming a twin defect. We determine that the formation of a twinned layer occurs significantly more slowly than that of a normal crystal layer. To understand this, we conduct thermodynamic modeling and determine that the propagation of a twin is limited by the energy cost of forming the twin interface. Finally, we determine that the slower propagation of twinned layers increases the probability of additional layers nucleating, such that multiple layers grow simultaneously. This observation challenges the current understanding that continuous uniform epitaxial growth, especially in the case of liquid-metal assisted nanowires, proceeds one single layer at a time and that its progression is limited by the nucleation rate.

4.
Nanotechnology ; 33(10)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34847548

RESUMO

We study usingin situtransmission electron microscopy the birth of GaAs nanowires from liquid Au-Ga catalysts on amorphous substrates. Lattice-resolved observations of the starting stages of growth are reported here for the first time. It reveals how the initial nanostructure evolves into a nanowire growing in a zincblende 〈111〉 or the equivalent wurtzite〈0001〉 direction. This growth direction(s) is what is typically observed in most III-V and II-VI nanowires. However, the reason for this preferential nanowire growth along this direction is still a dilemma. Based on the videos recorded shortly after the nucleation of nanowires, we argue that the lower catalyst droplet-nanowire interface energy of the {111} facet when zincblende (or the equivalent {0001} facet in wurtzite) is the reason for this direction selectivity in nanowires.

5.
Nanoscale Adv ; 3(20): 5928-5940, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132677

RESUMO

Semiconductor nanowires are promising material systems for coming-of-age nanotechnology. The usage of the vapor-solid-solid (VSS) route, where the catalyst used for promoting axial growth of nanowires is a solid, offers certain advantages compared to the common vapor-liquid-solid (VLS) route (using a liquid catalyst). The VSS growth of group-IV elemental nanowires has been investigated by other groups in situ during growth in a transmission electron microscope (TEM). Though it is known that compound nanowire growth has different dynamics compared to elemental semiconductors, the layer growth dynamics of VSS growth of compound nanowires have not been studied yet. Here we investigate for the first time controlled VSS growth of compound nanowires by in situ microscopy, using Au-seeded GaAs as a model system. The ledge-flow growth kinetics and dynamics at the wire-catalyst interface are studied and compared for liquid and solid catalysts under similar growth conditions. Here the temperature and thermal history of the system are manipulated to control the catalyst phase. In the first experiment discussed here we reduce the growth temperature in steps to solidify the initially liquid catalyst, and compare the dynamics between VLS and VSS growth observed at slightly different temperatures. In the second experiment we exploit thermal hysteresis of the system to obtain both VLS and VSS at the same temperature. The VSS growth rate is comparable or slightly slower than the VLS growth rate. Unlike in the VLS case, during VSS growth we frequently observe that a new layer starts before the previous layer is completely grown, i.e., 'multilayer growth'. Understanding the VSS growth mode enables better control of nanowire properties by widening the range of usable nanowire growth parameters.

6.
J Phys Chem Lett ; 11(8): 2949-2954, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32208728

RESUMO

Crystal growth of semiconductor nanowires from a liquid droplet depends on the stability of this droplet's liquid-solid interface. Because of the assisting property of the droplet, growth will be hindered if the droplet is displaced onto the nanowire sidewalls. Using real-time observation of such growth by in situ transmission electron microscopy combined with theoretical analysis of the surface energies involved, we observe a reoccurring truncation at the edge of the droplet-nanowire interface. We demonstrate that creating a truncation widens the parameter range for having a droplet on the top facet, which allows continued nanowire growth. Combining experiment and theory provides an explanation for the previously reported truncation phenomenon of the growth interface based only on droplet wetting dynamics. In addition to determining the fundamental limits of droplet-assisted nanowire growth, this allows experimental estimation of the surface tension and the surface energies of the nanowire such as the otherwise metastable wurtzite GaAs {101̅0} facet.

7.
ACS Nano ; 14(4): 3868-3875, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049491

RESUMO

Control of the crystallization process is central to developing nanomaterials with atomic precision to meet the demands of electronic and quantum technology applications. Semiconductor nanowires grown by the vapor-liquid-solid process are a promising material system in which the ability to form components with structure and composition not achievable in bulk is well-established. Here, we use in situ TEM imaging of Au-catalyzed GaAs nanowire growth to understand the processes by which the growth dynamics are connected to the experimental parameters. We find that two sequential steps in the crystallization process-nucleation and layer growth-can occur on similar time scales and can be controlled independently using different growth parameters. Importantly, the layer growth process contributes significantly to the growth time for all conditions and will play a major role in determining material properties such as compositional uniformity, dopant density, and impurity incorporation. The results are understood through theoretical simulations correlating the growth dynamics, liquid droplet, and experimental parameters. The key insights discussed here are not restricted to Au-catalyzed GaAs nanowire growth but can be extended to most compound nanowire growths in which the different growth species has very different solubility in the catalyst particle.

8.
Nat Commun ; 10(1): 4577, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594930

RESUMO

Semiconductor nanowires offer the opportunity to incorporate novel structures and functionality into electronic and optoelectronic devices. A clear understanding of the nanowire growth mechanism is essential for well-controlled growth of structures with desired properties, but the understanding is currently limited by a lack of empirical measurements of important parameters during growth, such as catalyst particle composition. However, this is difficult to accurately determine by investigating post-growth. We report direct in situ measurement of the catalyst composition during nanowire growth for the first time. We study Au-seeded GaAs nanowires inside an electron microscope as they grow and measure the catalyst composition using X-ray energy dispersive spectroscopy. The Ga content in the catalyst during growth increases with both temperature and Ga precursor flux.

9.
Nanotechnology ; 30(25): 254002, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30802882

RESUMO

Bulk gallium phosphide (GaP) crystallizes in the zinc-blende (ZB) structure and has an indirect bandgap. However, GaP nanowires (NWs) can be synthesized in the wurtzite (WZ) phase as well. The contradictory theoretical predictions and experimental reports on the band structure of WZ GaP suggest a direct or a pseudo-direct bandgap. There are only a few reports of the growth and luminescence from WZ and ZB GaP NWs. We first present a comprehensive study of the gold-catalyzed growth of GaP NWs via metalorganic vapor phase epitaxy on various crystalline and amorphous substrates. We optimized the growth parameters like temperature, pressure and reactant flow rates to grow WZ GaP NWs with minimal taper. These wires were characterized using electron microscopy, x-ray diffraction, Raman scattering and photoluminescence spectroscopy. The luminescence studies of bare GaP NWs and GaP/AlGaP core-shell heterostructures with WZ- and ZB-phase GaP cores suggest that the WZ-phase GaP has a pseudo-direct bandgap with weak near-band-edge luminescence intensity.

10.
Nano Lett ; 16(12): 7632-7638, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960500

RESUMO

Despite the numerous reports on the metal-catalyzed growth of GaN nanowires, the mechanism of growth is not well understood. Our study of the nickel-assisted growth of GaN nanowires using metalorganic chemical vapor deposition provides key insights into this process. From a comprehensive study of over 130 nanowires, we observe that as a function of thickness, the length of the nanowires initially increases and then decreases. We attribute this to an interplay between the Gibbs-Thomson effect dominant in very thin nanowires and a diffusion induced growth mode at larger thickness. We also investigate the alloy composition of the Ni-Ga catalyst particle for over 60 nanowires using energy dispersive X-ray spectroscopy, which along with data from electron energy loss spectroscopy and high resolution transmission electron microscopy suggests the composition to be Ni2Ga3. At the nanowire growth temperature, this alloy cannot be a liquid, even taking into account melting point depression in nanoparticles. We hence conclude that Ni-assisted GaN nanowire growth proceeds via a vapor-solid-solid mechanism instead of the conventional vapor-liquid-solid mechanism.

11.
Sci Rep ; 6: 36294, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808122

RESUMO

We report the optimized synthesis and electrochemical characterization of a composite of few-layered nanostructured MoS2 along with an electroactive metal oxide BiVO4. In comparison to pristine BiVO4, and a composite of graphene/BiVO4, the MoS2/BiVO4 nanocomposite provides impressive values of charge storage with longer discharge times and improved cycling stability. Specific capacitance values of 610 Fg-1 (170 mAhg-1) at 1 Ag-1 and 166 Fg-1 (46 mAhg-1) at 10 Ag-1 were obtained for just 2.5 wt% MoS2 loaded BiVO4. The results suggest that the explicitly synthesized small lateral-dimensioned MoS2 particles provide a notable capacitive component that helps augment the specific capacitance. We discuss the optimized synthesis of monoclinic BiVO4, and few-layered nanostructured MoS2. We report the discharge capacities and cycling performance of the MoS2/BiVO4 nanocomposite using an aqueous electrolyte. The data obtained shows the MoS2/BiVO4 nanocomposite to be a promising candidate for supercapacitor energy storage applications.

12.
Nano Lett ; 15(11): 7621-6, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26479952

RESUMO

We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA