Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28892507

RESUMO

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Assuntos
Blastocystis/genética , Genoma de Protozoário , Blastocystis/metabolismo , Metabolismo dos Carboidratos , Códon de Terminação , Microbioma Gastrointestinal , Humanos , Íntrons , Especificidade da Espécie
2.
BMC Genomics ; 15: 122, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24512041

RESUMO

BACKGROUND: The alveolates include a large number of important lineages of protists and algae, among which are three major eukaryotic groups: ciliates, apicomplexans and dinoflagellates. Collectively alveolates are present in virtually every environment and include a vast diversity of cell shapes, molecular and cellular features and feeding modes including lifestyles such as phototrophy, phagotrophy/predation and intracellular parasitism, in addition to a variety of symbiotic associations. Oxyrrhis marina is a well-known model for heterotrophic protist biology, and is now emerging as a useful organism to explore the many changes that occurred during the origin and diversification of dinoflagellates by virtue of its phylogenetic position at the base of the dinoflagellate tree. RESULTS: We have generated and analysed expressed sequence tag (EST) sequences from the alveolate Oxyrrhis marina in order to shed light on the evolution of a number of dinoflagellate characteristics, especially regarding the emergence of highly unusual genomic features. We found that O. marina harbours extensive gene redundancy, indicating high rates of gene duplication and transcription from multiple genomic loci. In addition, we observed a correlation between expression level and copy number in several genes, suggesting that copy number may contribute to determining transcript levels for some genes. Finally, we analyze the genes and predicted products of the recently discovered Dinoflagellate Viral Nuclear Protein, and several cases of horizontally acquired genes. CONCLUSION: The dataset presented here has proven very valuable for studying this important group of protists. Our analysis indicates that gene redundancy is a pervasive feature of dinoflagellate genomes, thus the mechanisms involved in its generation must have arisen early in the evolution of the group.


Assuntos
Dinoflagellida/genética , Etiquetas de Sequências Expressas , Modelos Biológicos , Evolução Biológica , Análise por Conglomerados , Reparo do DNA/genética , Dinoflagellida/classificação , Biblioteca Gênica , Transferência Genética Horizontal , Genoma de Protozoário , Meiose/genética , Filogenia , Retroelementos
3.
G3 (Bethesda) ; 3(11): 1927-43, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24062528

RESUMO

Nbs1, a core component of the Mre11-Rad50-Nbs1 complex, plays an essential role in the cellular response to DNA double-strand breaks (DSBs) and poorly understood roles in meiosis. We used the basidiomycete Coprinus cinereus to examine the meiotic roles of Nbs1. We identified the C. cinereus nbs1 gene and demonstrated that it corresponds to a complementation group previously known as rad3. One allele, nbs1-2, harbors a point mutation in the Nbs1 FHA domain and has a mild spore viability defect, increased frequency of meiosis I nondisjunction, and an altered crossover distribution. The nbs1-2 strain enters meiosis with increased levels of phosphorylated H2AX, which we hypothesize represent unrepaired DSBs formed during premeiotic replication. In nbs1-2, there is no apparent induction of Spo11-dependent DSBs during prophase. We propose that replication-dependent DSBs, resulting from defective replication fork protection and processing by the Mre11-Rad50-Nbs1 complex, are competent to form meiotic crossovers in C. cinereus, and that these crossovers lead to high levels of faithful chromosome segregation. In addition, although crossover distribution is altered in nbs1-2, the majority of crossovers were found in subtelomeric regions, as in wild-type. Therefore, the location of crossovers in C. cinereus is maintained when DSBs are induced via a Spo11-independent mechanism.


Assuntos
Coprinus/genética , Endodesoxirribonucleases/genética , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Alelos , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Coprinus/classificação , Coprinus/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genótipo , Histonas/genética , Histonas/metabolismo , Meiose , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Esporos Fúngicos/citologia
4.
Nature ; 492(7427): 59-65, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23201678

RESUMO

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


Assuntos
Núcleo Celular/genética , Cercozoários/genética , Criptófitas/genética , Evolução Molecular , Genoma/genética , Mosaicismo , Simbiose/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Processamento Alternativo/genética , Cercozoários/citologia , Cercozoários/metabolismo , Criptófitas/citologia , Criptófitas/metabolismo , Citosol/metabolismo , Duplicação Gênica/genética , Transferência Genética Horizontal/genética , Genes Essenciais/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética
5.
Genome Biol Evol ; 3: 950-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21876220

RESUMO

Arbuscular mycorrhizal fungi (AMF) represent an ecologically important and evolutionarily intriguing group of symbionts of land plants, currently thought to have propagated clonally for over 500 Myr. AMF produce multinucleate spores and may exchange nuclei through anastomosis, but meiosis has never been observed in this group. A provocative alternative for their successful and long asexual evolutionary history is that these organisms may have cryptic sex, allowing them to recombine alleles and compensate for deleterious mutations. This is partly supported by reports of recombination among some of their natural populations. We explored this hypothesis by searching for some of the primary tools for a sustainable sexual cycle--the genes whose products are required for proper completion of meiotic recombination in yeast--in the genomes of four AMF and compared them with homologs of representative ascomycete, basidiomycete, chytridiomycete, and zygomycete fungi. Our investigation used molecular and bioinformatic tools to identify homologs of 51 meiotic genes, including seven meiosis-specific genes and other "core meiotic genes" conserved in the genomes of the AMF Glomus diaphanum (MUCL 43196), Glomus irregulare (DAOM-197198), Glomus clarum (DAOM 234281), and Glomus cerebriforme (DAOM 227022). Homology of AMF meiosis-specific genes was verified by phylogenetic analyses with representative fungi, animals (Mus, Hydra), and a choanoflagellate (Monosiga). Together, these results indicate that these supposedly ancient asexual fungi may be capable of undergoing a conventional meiosis; a hypothesis that is consistent with previous reports of recombination within and across some of their populations.


Assuntos
Proteínas Fúngicas/genética , Glomeromycota/genética , Meiose/genética , Animais , Coanoflagelados/genética , Evolução Molecular , Camundongos , Micorrizas/genética , Filogenia , Recombinação Genética , Reprodução Assexuada/genética
6.
PLoS One ; 6(6): e20774, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695260

RESUMO

BACKGROUND: Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms. PRINCIPAL FINDINGS: Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas. CONCLUSIONS/SIGNIFICANCE: The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia.


Assuntos
Dosagem de Genes/genética , Genes de Protozoários/genética , Parabasalídeos/genética , Parasitos/genética , Filogenia , RNA Polimerase II/genética , Animais , Marcadores Genéticos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Proteínas de Protozoários/genética
7.
Mol Biol Evol ; 24(12): 2827-41, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921483

RESUMO

Spo11 is a meiotic protein of fundamental importance as it is a conserved meiosis-specific transesterase required for meiotic recombination initiation in fungi, animals, and plants. Spo11 is homologous to the archaebacterial topoisomerase VIA (Top6A) gene, and its homologs are broadly distributed among eukaryotes, with some eukaryotes having more than one homolog. However, the evolutionary relationships among these genes are unclear, with some debate as to whether eukaryotic homologs originated by lateral gene transfer. We have identified and characterized protist Spo11 homologs by degenerate polymerase chain reaction (PCR) and sequencing and by analyses of sequences from public databases. Our phylogenetic analyses show that Spo11 homologs evolved by two ancient eukaryotic gene duplication events prior to the last common ancestor of extant eukaryotes, resulting in three eukaryotic paralogs: Spo11-1, Spo11-2, and Spo11-3. Spo11-1 orthologs encode meiosis-specific proteins and are distributed broadly among eukaryotic lineages, though Spo11-1 is absent from some protists. This absence coincides with the presence of Spo11-2 orthologs, which are meiosis-specific in Arabidopsis and are found in plants, red algae, and some protists but absent in animals and fungi. Spo11-3 encodes a Top6A subunit that interacts with topoisomerase VIB (Top6B) subunits, which together play a role in vegetative growth in Arabidopsis. We identified Spo11-3 (Top6A) and Top6B homologs in plants, red algae, and a few protists, establishing a broader distribution of these genes among eukaryotes, indicating their likely vertical descent followed by lineage-specific loss.


Assuntos
DNA Topoisomerases Tipo II/genética , Esterases/genética , Evolução Molecular , Duplicação Gênica , Meiose , Filogenia , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Animais , Proteínas Arqueais , Sequência Conservada , DNA Topoisomerases Tipo II/química , Endodesoxirribonucleases , Esterases/química , Células Eucarióticas/enzimologia , Dados de Sequência Molecular , Células Procarióticas/enzimologia , Alinhamento de Sequência
8.
Science ; 315(5809): 207-12, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17218520

RESUMO

We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.


Assuntos
Genoma de Protozoário , Análise de Sequência de DNA , Trichomonas vaginalis/genética , Animais , Transporte Biológico/genética , Elementos de DNA Transponíveis , DNA de Protozoário/genética , Transferência Genética Horizontal , Genes de Protozoários , Humanos , Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Família Multigênica , Organelas/metabolismo , Estresse Oxidativo/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Processamento Pós-Transcricional do RNA , Sequências Repetitivas de Ácido Nucleico , Infecções Sexualmente Transmissíveis/parasitologia , Tricomoníase/parasitologia , Tricomoníase/transmissão , Trichomonas vaginalis/citologia , Trichomonas vaginalis/metabolismo , Trichomonas vaginalis/patogenicidade
9.
PLoS One ; 3(8): e2879, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18663385

RESUMO

Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.


Assuntos
Meiose/genética , Proteínas de Protozoários/genética , Trichomonas vaginalis/genética , Animais , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Evolução Molecular , Genoma de Protozoário , Modelos Genéticos , Proteínas de Protozoários/classificação , Proteínas de Protozoários/fisiologia , Recombinação Genética , Trichomonas vaginalis/citologia , Trichomonas vaginalis/fisiologia
10.
BMC Evol Biol ; 5: 11, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15693998

RESUMO

BACKGROUND: The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs) proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs) common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10), thrombotic thrombocytopenic purpura (ADAMTS13), and Ehlers-Danlos syndrome type VIIC (ADAMTS2) in humans and belted white-spotting mutation in mice (ADAMTS20). RESULTS: Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu), chordate (Ciona) and invertebrate (Drosophila and Caenorhabditis) ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. CONCLUSIONS: The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15) that may have distinct aggrecanase and angiogenesis functions.


Assuntos
Proteínas ADAM/química , Evolução Molecular , Proteínas ADAM/metabolismo , Motivos de Aminoácidos , Animais , Caenorhabditis elegans , Ciona intestinalis , Simulação por Computador , Drosophila , Etiquetas de Sequências Expressas , Duplicação Gênica , Genoma , Humanos , Íntrons , Modelos Genéticos , Filogenia , Estrutura Terciária de Proteína , Software
11.
Curr Biol ; 15(2): 185-91, 2005 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-15668177

RESUMO

Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.


Assuntos
Genes cdc , Genoma de Protozoário , Giardia lamblia/genética , Meiose/genética , Filogenia , Sexo , Animais , Sequência de Bases , Teorema de Bayes , Biologia Computacional , Primers do DNA , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA