Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Curr Res Struct Biol ; 7: 100144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681239

RESUMO

The ever-changing environmental conditions and pollution are the prime reasons for the onset of several emerging and re-merging diseases. This demands the faster designing of new drugs to curb the deadly diseases in less waiting time to cure the animals and humans. Drug molecules interact with only protein surface on specific locations termed as ligand binding sites (LBS). Therefore, the knowledge of LBS is required for rational drug designing. Existing geometrical LBS prediction methods rely on search of cavities based on the fact that 83% of the LBS found in deep cavities, however, these methods usually fail where LBS localize outside deep cavities. To overcome this challenge, the present work provides an artificial neural network (ANN) based method to predict LBS outside deep cavities in animal proteins including human to facilitate drug designing. In the present work a feed-forward backpropagation neural network was trained by utilizing 38 structural, atomic, physiochemical, and evolutionary discriminant features of LBS and non-LBS residues localized in the extracted roughest patch on protein surface. The performance of this ANN based prediction method was found 76% better for those proteins where cavity subspace (extracted by MetaPocket 2.0, a consensus method) failed to predict LBS due to their localization outside the deep cavities. The prediction of LBS outside deep cavities will facilitate in drug designing for the proteins where it is not possible due to lack of LBS information as the geometrical LBS prediction methods rely on extraction of deep cavities.

2.
Microorganisms ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674640

RESUMO

Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.

3.
Arch Virol ; 169(5): 102, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630315

RESUMO

A highly divergent bovine calicivirus was identified in an Indian calf with enteritis. The whole genome of this virus was sequenced, revealing distinct amino acid motifs in the polyprotein encoded by open reading frame 1 (ORF1) that are unique to caliciviruses. Phylogenetic analysis showed that it was related to members of the genus Nebovirus of the family Caliciviridae. Although it showed only 33.7-34.2% sequence identity in the VP1 protein to the nebovirus prototype strains, it showed 90.6% identity in VP1 to Kirklareli virus, a nebovirus detected in calves with enteritis in Turkey in 2012. An in-house-designed and optimized reverse transcription polymerase chain reaction (RT-PCR) assay was used to screen 120 archived bovine diarrhoeic fecal samples, 40 each from the Indian states of Uttar Pradesh, Haryana, and Himachal Pradesh, revealing frequent circulation of these divergent caliciviruses in the bovine population, with an overall positivity rate of 64.17% (77/120). This underscores the importance of conducting a comprehensive investigation of the prevalence of these divergent caliciviruses and assessing their associations with other pathogens responsible for enteritis in India.


Assuntos
Caliciviridae , Enterite , Vírus de RNA , Bovinos , Animais , Filogenia , Caliciviridae/genética , Índia/epidemiologia
4.
Virology ; 594: 110049, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38527382

RESUMO

The Second International Conference of the World Society for Virology (WSV), hosted by Riga Stradins University, was held in Riga, Latvia, on June 15-17th, 2023. It prominently highlighted the recent advancements in different disciplines of virology. The conference had fourteen keynote speakers covering diverse topics, including emerging virus pseudotypes, Zika virus vaccine development, herpesvirus capsid mobility, parvovirus invasion strategies, influenza in animals and birds, West Nile virus and Marburg virus ecology, as well as the latest update in animal vaccines. Discussions further explored SARS-CoV-2 RNA replicons as vaccine candidates, SARS-CoV-2 in humans and animals, and the significance of plant viruses in the 'One Health' paradigm. The presence of the presidents from three virology societies, namely the American, Indian, and Korean Societies for Virology, highlighted the event's significance. Additionally, past president of the American Society for Virology (ASV), formally declared the partnership between ASV and WSV during the conference.


Assuntos
Vacinas contra Influenza , Saúde Única , Vírus , Infecção por Zika virus , Zika virus , Animais , Humanos , RNA Viral , Virologia
5.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542246

RESUMO

To date, limited information is available on cytomegalovirus (CMV) and lymphocryptovirus (LCV) from Chlorocebus monkeys. We report here high detection rates of herpesviruses in free-roaming African green monkeys (AGMs, Chlorocebus sabaeus) (26.4%, 23/87) and in captive AGMs (75%, 3/4) with respiratory disease on the Caribbean Island of St. Kitts. LCV (81.25%) was more prevalent than CMV (18.75%) in the AGMs. Applying a bigenic PCR approach (targeting DNA polymerase (DPOL) and glycoprotein B (gB) genes), long sequences were obtained from representative AGM CMV (KNA-SD6) and LCV (KNA-E4, -N6 and -R15) samples, and mixed LCV infections were identified in KNA-N6 and -R15. The nucleotide (nt) sequence (partial DPOL-intergenic region-partial gB) and partial DPOL- and gB-amino acid (aa) sequences of AGM CMV KNA-SD6 were closely related to Cytomegalovirus cercopithecinebeta5 isolates from grivet monkeys, whilst those of AGM LCV KNA-E4 and -N6 (and E4-like gB of KNA-R15) were more closely related to cognate sequences of erythrocebus patas LCV1 from patas monkey than other LCVs, corroborating the concept of cospeciation in the evolution of CMV/LCV. On the other hand, the partial DPOL aa sequence of KNA-R15, and additional gB sequences (N6-gB-2 and R15-gB-2) from samples KNA-N6 and -R15 (respectively) appeared to be distinct from those of Old World monkey LCVs, indicating LCV evolutionary patterns that were not synchronous with those of host species. The present study is the first to report the molecular prevalence and genetic diversity of CMV/LCV from free-roaming/wild and captive AGMs, and is the first report on analysis of CMV nt/deduced aa sequences from AGMs and LCV gB sequences from Chlorocebus monkeys.


Assuntos
Infecções por Citomegalovirus , Lymphocryptovirus , Animais , Chlorocebus aethiops , Lymphocryptovirus/genética , Citomegalovirus/genética , Filogenia , Herpesvirus Humano 4 , Glicoproteínas/genética , Variação Genética
6.
J Wildl Dis ; 60(1): 77-85, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924237

RESUMO

The red fox (Vulpes vulpes) is one of the most common species of wild Canidae and is relatively abundant in Iran. Foxes (Vulpes spp.) transmit many zoonotic diseases, the most important of which are visceral leishmaniasis, rabies, hydatidosis, toxocariasis, and trichinellosis. In this study, visceral leishmaniasis, rabies, ectoparasites, canine gastrointestinal helminths, dermatophytosis, distemper, parvovirus infection, and heartworm infections were evaluated among live-trapped and rescued foxes injured by traffic road accidents referred to the teaching hospital of Kerman, Iran, veterinary faculty. Skin scraping and direct microscopic examination were used to detect ectoparasites and dermatophytosis. Immunochromatography rapid kits were used to detect dirofilariasis, parvovirus infection, and distemper. Necropsy was used to check for gastrointestinal parasites. Rabies and visceral leishmaniosis were screened for with direct fluorescent antibody test and ELISA methods, respectively. Gastrointestinal helminth infections, including Toxocara canis, Taenia taeniaeformis, Dipylidium caninum, Joyeuxiella echinorhyncoids, Toxascaris leonina, Taenia hydatigena, Echinococcus granulosus, Rictolaria spp., Oxynema spp., Macracanthorhynchus hirudinaceus, and Physaloptera spp., were detected. Skin scrapings showed dermatophytosis and various ectoparasites, including Rhipicephalus sanguineus, Ctenocephalides canis and Ctenocephalides felis, and Sarcoptes scabiei, in foxes with dermal lesions. Distemper and parvovirus infection (26.66%) were the common viral diseases, and rabies infection rate was quite high (16.66%). Dirofilariasis and leishmaniasis were detected in 10% of the population. This study showed that urban foxes which often cohabit with humans and domestic animals are carriers of many different pathogens. This interaction may facilitate indirect cross-species transmission of zoonotic disease. Periodic health monitoring and multidisciplinary cooperation for the diagnosis, control, and prevention of these zoonoses is highly recommended.


Assuntos
Cestoides , Dirofilariose , Cinomose , Doenças do Cão , Helmintos , Leishmaniose Visceral , Infecções por Parvoviridae , Raiva , Tinha , Humanos , Animais , Cães , Raposas/parasitologia , Irã (Geográfico)/epidemiologia , Leishmaniose Visceral/veterinária , Raiva/veterinária , Zoonoses , Infecções por Parvoviridae/veterinária , Tinha/veterinária , Prevalência , Doenças do Cão/epidemiologia
7.
Virology ; 590: 109906, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096748

RESUMO

The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.


Assuntos
Infecções por Enterovirus , Enterovirus , Enterovirus Suínos , Suínos , Animais , Enterovirus Suínos/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/veterinária , Infecções por Enterovirus/genética , Filogenia , Sequenciamento Completo do Genoma , Genótipo , Fatores de Risco , Genoma Viral , Enterovirus/genética
9.
Pathogens ; 12(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513781

RESUMO

The present study reports the detection and molecular characterisation of rotavirus C (RVC) in sloth bears (Melursus ursinus) rescued from urban areas in India. Based on an RVC VP6 gene-targeted diagnostic RT-PCR assay, 48.3% (42/87) of sloth bears tested positive for RVC infection. The VP6, VP7, and NSP4 genes of three sloth bear RVC isolates (UP-SB19, 21, and 37) were further analysed. The VP6 genes of RVC UP-SB21 and 37 isolates were only 37% identical. The sequence identity, TM-score from structure alignment, and selection pressure (dN/dS) of VP6 UP-SB37 with pig and human RVCs isolates were (99.67%, 0.97, and 1.718) and (99.01%, 0.93, and 0.0340), respectively. However, VP6 UP-SB21 has an identity, TM-score, and dN/dS of (84.38%, 1.0, and 0.0648) and (99.63%, 1.0, and 3.7696) with human and pig RVC isolates, respectively. The VP7 genes from UP-SB19 and 37 RVC isolates were 79.98% identical and shared identity, TM-score, and dN/dS of 88.4%, 0.76, and 5.3210, along with 77.98%, 0.77, and 4.7483 with pig and human RVC isolates, respectively. The NSP4 gene of UP-SB37 RVC isolates has an identity, TM-score, and dN/dS of 98.95%, 0.76, and 0.2907, along with 83.12%, 0.34, and 0.2133 with pig and human RVC isolates, respectively. Phylogenetic analysis of the nucleotide sequences of the sloth bear RVC isolates assigned the isolate UP-SB37 to genotype G12, I2 for RVC structural genes VP7 and VP6, and E1 for NSP4 genes, respectively, while isolates UP-SB19 and UP-SB21 were classified as genotype G13 and GI7 based on the structural gene VP7, respectively. The study suggests that the RVCs circulating in the Indian sloth bear population are highly divergent and might have originated from pigs or humans, and further investigation focusing on the whole genome sequencing of the sloth bear RVC isolate may shed light on the virus origin and evolution.

10.
Viruses ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515291

RESUMO

In the present study, 31 samples (12 fecal, 9 nasal and 10 rectal swabs) from 28/92 (30.43%, 10 captive and 18 free-roaming African green monkeys (AGMs, Chlorocebus sabaeus)) apparently healthy AGMs in the Caribbean Island of St. Kitts tested positive for adenoviruses (AdVs) by DNA-dependent DNA polymerase (pol)-, or hexon-based screening PCR assays. Based on analysis of partial deduced amino acid sequences of Pol- and hexon- of nine AGM AdVs, at least two AdV genetic variants (group-I: seven AdVs with a Simian mastadenovirus-F (SAdV-F)/SAdV-18-like Pol and hexon, and group-II: two AdVs with a SAdV-F/SAdV-18-like Pol and a Human mastadenovirus-F (HAdV-F)/HAdV-40-like hexon) were identified, which was corroborated by analysis of the nearly complete putative Pol, complete hexon, and partial penton base sequences of a representative group-I (strain KNA-08975), and -II (KNA-S6) AdV. SAdV-F-like AdVs were reported for the first time in free-roaming non-human primates (NHPs) and after ~six decades from captive NHPs. Molecular characterization of KNA-S6 (and the other group-II AdV) indicated possible recombination and cross-species transmission events involving SAdV-F-like and HAdV-F-like viruses, corroborating the hypothesis that the evolutionary pathways of HAdVs and SAdVs are intermingled, complicated by recombination and inter-species transmission events, especially between related AdV species, such as HAdV-F and SAdV-F. To our knowledge, this is the first report on detection and molecular characterization of AdVs in AGMs.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Chlorocebus aethiops , Doenças dos Macacos , Adenoviridae/classificação , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Animais , Animais Selvagens , São Cristóvão e Névis , Filogenia , Infecções por Adenoviridae/transmissão , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Doenças dos Macacos/transmissão , Doenças dos Macacos/virologia , Animais de Zoológico
11.
Pathogens ; 12(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111487

RESUMO

To date, only a handful of viruses have been identified in sea turtles. Although eukaryotic circular Rep (replication initiation protein)-encoding single-stranded DNA (CRESS DNA) viruses have been reported from a wide variety of terrestrial species, and some of these viruses have been associated with clinical conditions in certain animals, limited information is available on CRESS DNA viruses from marine life. The present study aimed to investigate the presence of CRESS DNA viruses in sea turtles. In the present study, two (samples T3 and T33) of the 34 cloacal samples from 31 sea turtles (found in ocean waters around the Caribbean Islands of St. Kitts and Nevis) tested positive for CRESS DNA viruses by a pan-rep nested PCR assay. The partial Rep sequence of T3 shared 75.78% of a deduced amino acid (aa) identity with that of a CRESS DNA virus (classified under family Circoviridae) from a mollusk. On the other hand, the complete genome (2428 bp) of T33 was determined by an inverse nested PCR assay. The genomic organization of T33 mirrored those of type II CRESS DNA viral genomes of cycloviruses, characterized by the putative "origin of replication" in the 5'-intergenic region, and the putative Capsid (Cap)- and Rep-encoding open reading frame on the virion-sense- and antisense-strand, respectively. The putative Rep (322 aa) of T33 retained the conserved "HUH endonuclease" and the "super 3 family helicase" domains and shared pairwise aa identities of ~57% with unclassified CRESS DNA viruses from benthic sediment and mollusks. Phylogenetically, the T33 Rep formed a distinct branch within an isolated cluster of unclassified CRESS DNA viruses. The putative Cap (370 aa) of T33 shared maximum pairwise aa identity of 30.51% with an unclassified CRESS DNA virus from a capybara. Except for a blood sample from T33 that tested negative for CRESS DNA viruses, other tissue samples were not available from the sea turtles. Therefore, we could not establish whether the T3 and T33 viral strains infected the sea turtles or were of dietary origin. To our knowledge, this is the first report on the detection of CRESS DNA viruses from sea turtles, adding yet another animal species to the rapidly expanding host range of these viruses. Complete genome analysis of T33 identified a novel, unclassified CRESS DNA virus, providing insights into the high genetic diversity between viruses within the phylum Cressdnaviricota. Considering that sea turtles are an at-risk species, extensive studies on virus discovery, surveillance, and pathogenesis in these marine animals are of the utmost importance.

12.
Pathogens ; 12(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36839522

RESUMO

The increasing detection of Porcine circovirus 3 (PCV3, family Circoviridae) in clinically ill pigs worldwide has raised concerns on the implications of the virus on porcine health and the pork industry. Although pork production constitutes an important component of the livestock economy and is a major source of animal protein in the Caribbean Islands, there are no reports on PCV3 in pigs from the region so far. In the present study, PCV3 was detected in 21% (21/100) of diarrheic pigs (sampled at three farms) from the Caribbean nation of the Dominican Republic (DR). Although the sample size varied between porcine age groups, the highest PCV3 detection rates (35.3% each, respectively) were observed in piglets and growers. Co-infections with PCV2 and porcine adenovirus were observed in 38.09% and 9.52% of the PCV3 positive samples, respectively. The complete genomes of 11 DR PCV3 strains were analyzed in the present study, revealing a unique deletion (corresponding to nucleotide residue at position 1165 of reference PCV3 sequences) in one of the DR PCV3 sequences. Based on sequence identities and phylogenetic analysis (open reading frame 2 and complete genome sequences), the DR PCV3 strains were assigned to genotype PCV3a, and shared high sequence homologies (>98% identities) between themselves and with those of other PCV3a (Clade-1) strains, corroborating previous observations on the genetic stability of PCV3 worldwide. To our knowledge, this is the first report on the detection and molecular characterization of PCV3 in pigs from the Caribbean region, providing important insights into the expanding global distribution of the virus, even in isolated geographical regions (the Island of Hispaniola). Our findings warrant further investigations on the molecular epidemiology and economic implications of PCV3 in pigs with diarrhea and other clinical conditions across the Caribbean region.

13.
Vet Q ; 43(1): 1-10, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786106

RESUMO

BACKGROUND: India recorded the first outbreak of African swine fever (ASF) in North-eastern region (NER) in the year 2020. AIM: The current study was undertaken to investigate the transmission of African swine fever virus (ASFV) in the wild boars of Northeast India, particularly of Assam. MATERIAL AND METHODS: ASF suspected mortal tissue remains and blood samples of wild boars collected from different locations of Assam were screened for molecular detection of swine viruses which includes Classical swine fever virus, Porcine Circovirus 2, Porcine reproductive and respiratory syndrome virus and ASFV. RESULTS: One sample each from Manas and Nameri National Parks was detected positive for ASFV. Besides this, one of the samples was positive for CSFV and one of the ASFV positive samples was also positive for PCV2. Several striking gross and microscopic alterations were noticed in different organs of ASFV infected animals. Sequencing and phylogenetic analysis of B646L gene confirmed the presence of ASFV genotype-II in wild boars. Circulation of similar genotype in domestic pigs of NER in the contemporary period as well as locations near to the aforementioned national parks indicates the transmission of ASFV from domestic to wild boars. CLINICAL RELEVANCE: The detection of ASFV in the wild boars of Assam is alarming as it is an impending threat to pig population and other endangered species (particularly Pygmy hog), making it increasingly daunting to control the disease. CONCLUSION: Chances are high for ASFV to become endemic in Assam region if stringent measures are not taken at proper time.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Filogenia , Sus scrofa , Surtos de Doenças , Doenças dos Suínos/epidemiologia
14.
J Biomol Struct Dyn ; 41(15): 7480-7489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36148815

RESUMO

African swine fever (ASF) is a highly infectious viral disease of pigs, which causes acute fatal haemorrhage and is a severe concern to the global pork industry. The present study followed computational approaches to identify B- and T-cell epitopes for the p30 and p54 proteins of the African swine fever virus (ASFV) by interacting with the swine leukocyte antigen (SLA) alleles. The amino acid sequences of p30 and p54 were analysed for variability and relative solvent accessibility, and their three-dimensional structures were predicted and validated. Molecular dynamics simulation was performed to study the structural and dynamic properties of the protein. Six and five linear B-cell epitopes have been predicted for p30 and p54, respectively. Four and three discontinuous B-cell epitopes have been predicted for p30 and p54, respectively. Further, the top five T-cell epitopes for SLA-1, 2, and 3 have been listed for both proteins. These results can help us to understand the immunodominant regions in the p30 and p54 proteins of ASFV and potentially assist in designing peptide-based diagnostics and vaccines. Also, the identified T-cell epitopes may be considered for peptide-based vaccine design against ASFV.Communicated by Ramaswamy H. Sarma.

15.
Afr Health Sci ; 23(3): 400-405, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38357173

RESUMO

Background: The SARS-CoV-2 is an extremely contagious and acute viral disease mainly affecting humans. Objective: To estimate seroprevalence of SARS-CoV-2 neutralizing antibodies (NAbs) for illegible armed force individuals living in Rabat, Morocco. Method: A convenience sample (N = 2662) was conducted from May 2020 to February 2021. We used the standard neutralization assay to quantify the NAbs titers. A serum was positive when the titer was 1:4. High positive NAbs titers were defined when ≥ 1:32. Results: Demographic and socioeconomic status did not affect seroprevalence data. An overall seroprevalence of 24,9% was found. Sera from blood donors, young recruits and auto-immune population had lower NAbs titers. However, titers were above 1:16 in 9% of the population with high risk of SARS-CoV-2 exposure. Seropositivity increased over time with values reaching peaks after the epidemic waves (2.4% in May 2020; 16.2% in August 2020; 22.7% in December 2020 and 37% in February 2021). Conclusion: And increase of NAbs was observed over time and correlated with the post-epidemic waves of COVID-19 in Morocco.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Marrocos/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Neutralizantes , Anticorpos Antivirais
16.
Pathogens ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297267

RESUMO

Since the first report on isolation of porcine adenovirus serotype 5 (PAdV-5, species Porcine mastadenovirus C (PAdV-C)) from pigs with respiratory illness in Japan in 1987, PAdV-5 have been detected in a few fecal samples from healthy pigs and in some environmental samples. To date, only a single PAdV-5 strain (isolate HNF-70 from 1987) has been analyzed for the complete genome. We report here high detection rates of PAdV-5 (25.74%, 26/101 fecal samples) in diarrheic pigs at 3 different farms in the Caribbean country of Dominican Republic. After a long gap, the complete deduced amino acid sequences of the DNA-dependent DNA polymerase (pol) and hexon of two PAdV-5 strains (GES7 and Z11) were determined, revealing >99% sequence identities between PAdV-5 strains (HNF-70, GES7 and Z11) detected in different parts of the world and during different time periods (1987, and 2020−2021). By phylogenetic analysis, the putative hexon and pol of HNF-70, GES7 and Z11 exhibited similar clustering patterns, with the PAdV-5 strains forming a tight cluster near ruminant AdVs, distinct from the species PAdV-A and -B. GES7 and Z11 retained the various conserved features present in the putative pol and major late promoter region of HNF-70. Considering the paucity of data on current epidemiological status and genetic diversity of PAdV in porcine populations, our findings warrant similar studies on PAdV-5 and other PAdVs in clinically ill and healthy pigs. To our knowledge, this is the first report on detection and molecular characterization of PAdV-5 (PAdV-C) from diarrheic pigs.

17.
Microbiol Resour Announc ; 11(11): e0022722, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36287079

RESUMO

African swine fever virus (ASFV) entered the northeastern (NE) part of India early in 2020, causing huge economic loss to the piggery sector. Here, we are presenting a brief report on the draft genome sequence of an ASFV strain ABTCVSCK_ASF007 from Assam state of NE India belonging to genotype II.

18.
Viruses ; 14(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36016421

RESUMO

We report here high rates (47.5%, 48/101) of detection of porcine circovirus 2 (PCV2) in diarrheic pigs from three pig farms in the Dominican Republic. Seventeen of the PCV2 positive samples, representing the three pig farms, different age groups and sampling periods (2020-2021), were amplified for the complete PCV2 genome. Based on analysis of open reading frame 2 and complete genome sequences, the 17 PCV2 strains were assigned to the PCV2d genotype. Significant differences were observed in PCV2 detection rates between the vaccinated (20% (10/50)) and unvaccinated (62.5% (10/16) and 80% (28/35)) farms, corroborating previous observations that PCV2a-based vaccines confer protection against heterologous PCV2 genotypes. The present study is the first to report detection and molecular characterization of PCV2 from the Dominican Republic, warranting large-scale molecular epidemiological studies on PCV2 in pig farms and backyard systems across the country. For the first time, PCV2d was identified as the predominant PCV2 genotype in a study from the Caribbean region, suggesting that a genotype shift from PCV2b to PCV2d might be happening in the Caribbean region, which mirrored the current PCV2 genotype scenario in many other parts of the world. Besides PCV2, we also identified a pigeon circovirus-like virus, and a circular Replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA virus, which was characterized for the complete genome. The CRESS DNA virus shared a similar genomic organization and was related to unclassified CRESSV2 DNA viruses (belonging to the Order Cirlivirales) from porcine feces in Hungary, indicating that related unclassified CRESS DNA viruses are circulating among pigs in different geographical regions, warranting further studies on the epidemiology and biology of these novel viruses.


Assuntos
Brassicaceae , Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Circovirus/genética , República Dominicana/epidemiologia , Genótipo , Filogenia , Suínos
19.
Environ Res ; 212(Pt C): 113303, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35460633

RESUMO

Understanding the origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a highly debatable and unresolved issue for scientific communities all over the world. Understanding the mechanism of virus entry to the host cells is crucial to deciphering the susceptibility profiles of animal species to SARS-CoV-2. The interaction of SARS-CoV-2 ligands (receptor-binding domain on spike protein) with its host cell receptor, angiotensin-converting enzyme 2 (ACE2), is a critical determinant of host range and cross-species transmission. In this study, we developed and implemented a rigorous computational approach for predicting binding affinity between 299 ACE2 orthologs from diverse vertebrate species and the SARS-CoV-2 spike protein. The findings show that the SARS-CoV-2 spike protein can bind to a wide range of vertebrate species carrying evolutionary divergent ACE2, implying a broad host range at the virus entry level, which may contribute to cross-species transmission and further viral evolution. Furthermore, the current study facilitated the identification of genetic determinants that may differentiate susceptible from resistant host species based on the conservation of ACE2-spike protein interacting residues in vertebrate host species known to facilitate SARS-CoV-2 infection; however, these genetic determinants warrant in vivo experimental confirmation. The molecular interactions associated with varied binding affinity of distinct ACE2 isoforms in a specific bat species were identified using protein structure analysis, implying the existence of diversified bat species' susceptibility to SARS-CoV-2. The current study's findings highlight the importance of intensive surveillance programmes aimed at identifying susceptible hosts, especially those with the potential to transmit zoonotic pathogens, in order to prevent future outbreaks.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vertebrados/metabolismo
20.
Vet Res Commun ; 46(3): 967-978, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35194693

RESUMO

Bluetongue (BT) disease poses a constant risk to the livestock population around the world. A better understanding of the risk factors will enable a more accurate prediction of the place and time of high-risk events. Mapping the disease epizootics over a period in a particular geographic area will identify the spatial distribution of disease occurrence. A Geographical Information System (GIS) based methodology to analyze the relationship between bluetongue epizootics and spatial-temporal patterns was used for the years 2000 to 2015 in sheep of Andhra Pradesh, India. Autocorrelation (ACF), partial autocorrelation (PACF), and cross-correlation (CCF) analyses were carried out to find the self-dependency between BT epizootics and their dependencies on environmental factors and livestock population. The association with climatic or remote sensing variables at different months lag, including wind speed, temperature, rainfall, relative humidity, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), land surface temperature (LST), was also examined. The ACF & PACF of BT epizootics with its lag showed a significant positive autocorrelation with a month's lag (r = 0.41). Cross-correlations between the environmental variables and BT epizootics indicated the significant positive correlations at 0, 1, and 2 month's lag of rainfall, relative humidity, normalized difference water index (NDWI), and normalized difference vegetation index (NDVI). Spatial autocorrelation analysis estimated the univariate global Moran's I value of 0.21. Meanwhile, the local Moran's I value for the year 2000 (r = 0.32) showed a high degree of spatial autocorrelation. The spatial autocorrelation analysis revealed that the BT epizootics in sheep are having considerable spatial association among the outbreaks in nearby districts, and have to be taken care of while making any forecasting or disease prediction with other risk factors.


Assuntos
Bluetongue , Doenças dos Ovinos , Animais , Bluetongue/epidemiologia , Surtos de Doenças/veterinária , Índia/epidemiologia , Gado , Ovinos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA