Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astron Astrophys ; 6372020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32565548

RESUMO

CONTEXT: Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. AIMS: Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. METHODS: Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model Nautilus is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. RESULTS: Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n H > 2 × 104. This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5 - 10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. CONCLUSIONS: The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.

2.
Astron Astrophys ; 6242019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31156252

RESUMO

GEMS is an IRAM 30m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud TMC 1. Extensive millimeter observations have been carried out with the IRAM 30m telescope (3 mm and 2 mm) and the 40m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A V ~ 3 to ~20 mag. Two phases with differentiated chemistry can be distinguished: i) the translucent envelope with molecular hydrogen densities of 1-5×103 cm-3; and ii) the dense phase, located at A V > 10 mag, with molecular hydrogen densities >104 cm-3. Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A V ~ 3 mag) where C/H ~ 8×10-5 and C/O~0.8-1, until the beginning of the dense phase at A V ~ 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate a S/H ~ (0.4 - 2.2) ×10-6, an abundance ~7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H ~8×10-8). Based on our chemical modeling, we constrain the value of ζ H2 to ~ (0.5 - 1.8) ×10-16 s-1 in the translucent cloud.

3.
Gene Ther ; 25(1): 39-46, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29345252

RESUMO

Lentiviral vectors (LVs) are promising tools for gene therapy. However, scaling up the production methods of LVs in order to produce high-quality vectors for clinical purposes has proven to be difficult. In this article, we present a scalable and efficient method to produce LVs with transient transfection of adherent 293T cells in a fixed-bed bioreactor. The disposable iCELLis bioreactors are scalable with a large three-dimensional (3D) growth area range between 0.53 and 500 m2, an integrated perfusion system, and a controllable environment for production. In this study, iCELLis Nano (2.67-4 m2) was used for optimizing production parameters for scale-up. Transfections were first done using traditional calcium phosphate method, but in later runs polyethylenimine was found to be more reliable and easier to use. For scalable LV production, perfusion rate control by measuring cell metabolite concentrations in the bioreactor leads to higher productivity and reduced costs. Optimization of cell seeding density for targeted cell concentration during transfection, use of low compaction fixed-bed and lowering the culture pH have a positive effect on LV productivity. These results show for the first time that iCELLis bioreactor is scalable from bench level to clinical scale LV production.


Assuntos
Reatores Biológicos , Vetores Genéticos , Lentivirus/crescimento & desenvolvimento , Cultura de Vírus/métodos , Fosfatos de Cálcio/química , Controle de Custos , Meios de Cultura , Glucose/metabolismo , Células HEK293 , Humanos , Lactatos/metabolismo , Polietilenoimina/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA