Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069200

RESUMO

Febrile seizures during early childhood may result in central nervous system developmental disorders. However, the specific mechanisms behind the impact of febrile seizures on the developing brain are not well understood. To address this gap in knowledge, we employed a hyperthermic model of febrile seizures in 10-day-old rats and tracked their development over two months. Our objective was to determine the degree to which the properties of the hippocampal glutamatergic system are modified. We analyzed whether pyramidal glutamatergic neurons in the hippocampus die after febrile seizures. Our findings indicate that there is a reduction in the number of neurons in various regions of the hippocampus in the first two days after seizures. The CA1 field showed the greatest susceptibility, and the reduction in the number of neurons in post-FS rats in this area appeared to be long-lasting. Electrophysiological studies indicate that febrile seizures cause a reduction in glutamatergic transmission, leading to decreased local field potential amplitude. This impairment could be attributable to diminished glutamate release probability as evidenced by decreases in the frequency of miniature excitatory postsynaptic currents and increases in the paired-pulse ratio of synaptic responses. We also found higher threshold current causing hind limb extension in the maximal electroshock seizure threshold test of rats 2 months after febrile seizures compared to the control animals. Our research suggests that febrile seizures can impair glutamatergic transmission, which may protect against future seizures.


Assuntos
Hipertermia Induzida , Convulsões Febris , Estado Epiléptico , Pré-Escolar , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Hipertermia Induzida/efeitos adversos , Hipocampo/fisiologia , Região CA1 Hipocampal , Estado Epiléptico/complicações , Modelos Animais de Doenças
2.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445137

RESUMO

Disrupted glutamate clearance in the synaptic cleft leads to synaptic dysfunction and neurological diseases. Decreased glutamate removal from the synaptic cleft is known to cause excitotoxicity. Data on the physiological effects of increased glutamate clearance are contradictory. This study investigated the consequences of ceftriaxone (CTX), an enhancer of glutamate transporter 1 expression, treatment on long-term synaptic potentiation (LTP) in the hippocampus of young rats. In this study, 5-day administration of CTX (200 mg/kg) significantly weakened LTP in CA3-CA1 synapses. As shown by electrophysiological recordings, LTP attenuation was associated with weakening of N-Methyl-D-aspartate receptor (NMDAR)-dependent signaling in synapses. However, PCR analysis did not show downregulation of NMDAR subunits or changes in the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. We assume that extracellular burst stimulation activates fewer synapses in CTX-treated animals because increased glutamate reuptake results in reduced spillover, and neighboring synapses do not participate in neurotransmission. Attenuation of LTP was not accompanied by noticeable behavioral changes in the CTX group, with no behavioral abnormalities observed in the open field test or Morris water maze test. Thus, our experiments show that increased glutamate clearance can impair long-term synaptic plasticity and that this phenomenon can be considered a potential side effect of CTX treatment.


Assuntos
Ceftriaxona/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
3.
Int J Mol Sci ; 20(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766528

RESUMO

Epilepsy is a common neurological disorder. Despite the availability of a wide range of antiepileptic drugs, these are unsuccessful in preventing seizures in 20-30% of patients. Therefore, new pharmacological strategies are urgently required to control seizures. Modulation of glutamate uptake may have potential in the treatment of pharmacoresistant forms of epilepsy. Previous research showed that the antibiotic ceftriaxone (CTX) increased the expression and functional activity of excitatory amino acid transporter 2 (EAAT2) and exerted considerable anticonvulsant effects. However, other studies did not confirm a significant anticonvulsant effect of CTX administration. We investigated the impacts of CTX treatment on EAAT expression and glutamatergic neurotransmission, as well its anticonvulsant action, in young male Wistar rats. As shown by a quantitative real-time polymerase chain reaction (qPCR) assay and a Western blot analysis, the mRNA but not the protein level of EAAT2 increased in the hippocampus following CTX treatment. Repetitive CTX administration had only a mild anticonvulsant effect on pentylenetetrazol (PTZ)-induced convulsions in a maximal electroshock threshold test (MEST). CTX treatment did not affect the glutamatergic neurotransmission, including synaptic efficacy, short-term facilitation, or the summation of excitatory postsynaptic potentials (EPSPs) in the hippocampus and temporal cortex. However, it decreased the field EPSP (fEPSP) amplitudes evoked by intense electrical stimulation. In conclusion, in young rats, CTX treatment did not induce overexpression of EAAT2, therefore exerting only a weak antiseizure effect. Our data provide new insight into the effects of modulation of EAAT2 expression on brain functioning.


Assuntos
Ceftriaxona/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Expressão Gênica/efeitos dos fármacos , Convulsões/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/fisiopatologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Ratos Wistar , Convulsões/genética , Convulsões/fisiopatologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/metabolismo , Lobo Temporal/fisiopatologia
4.
Neuroscience ; 379: 202-215, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29580962

RESUMO

Profound alterations in both the synaptic and intrinsic membrane properties of neurons that increase the neuronal network excitability are found in epileptic tissue. However, there are still uncertainties regarding the kind of changes in the intrinsic membrane properties occurring during epileptogenesis. Epileptogenesis is typically triggered by the initial brain-damaging insult, and status epilepticus (SE) is one of such insults. In the present study, we explored the acute changes in the intrinsic membrane properties of pyramidal cells one day after SE in a rat lithium-pilocarpine model. Using whole-cell patch-clamp recording and the dynamic-clamp technique, we investigated the properties of regular-spiking neurons in the entorhinal cortex (EC) and the medial prefrontal cortex (PFC), two areas differentially affected by SE. We found that one day after SE: (1) the intrinsic membrane properties of EC neurons are significantly altered, while the properties of PFC neurons are mostly unchanged; (2) the input resistance and membrane time constant of regular-spiking neurons are reduced due to enhanced leak current; (3) the active membrane properties of neurons are mostly unaffected; and (4) changes in the passive membrane properties diminish the intrinsic neuronal excitability. Therefore, our results suggest that the acute changes in the intrinsic membrane properties of entorhinal neurons following pilocarpine-induced SE do not contribute to network hyperexcitability. In contrast, at the early stage of epileptogenesis, protective homeostatic plasticity of intrinsic membrane properties is observed in the EC; it reduces the neuronal excitability in response to increased network excitability.


Assuntos
Córtex Entorrinal/fisiopatologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Estado Epiléptico/fisiopatologia , Animais , Modelos Animais de Doenças , Compostos de Lítio , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Técnicas de Patch-Clamp , Pilocarpina , Ratos Wistar , Técnicas de Cultura de Tecidos
5.
Front Cell Neurosci ; 12: 486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618633

RESUMO

Excessive excitation is considered one of the key mechanisms underlying epileptic seizures. We investigated changes in the evoked postsynaptic responses of medial entorhinal cortex (ERC) pyramidal neurons by seizure-like events (SLEs), using the modified 4-aminopyridine (4-AP) model of epileptiform activity. Rat brain slices were perfused with pro-epileptic solution contained 4-AP and elevated potassium and reduced magnesium concentration. We demonstrated that 15-min robust epileptiform activity in slices leads to an increase in the amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated component of the evoked response, as well as an increase in the polysynaptic γ-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptor-mediated components. The increase in AMPA-mediated postsynaptic conductance depends on NMDA receptor activation. It persists for at least 15 min after the cessation of SLEs and is partly attributed to the inclusion of calcium-permeable AMPA receptors in the postsynaptic membrane. The mathematical modeling of the evoked responses using the conductance-based refractory density (CBRD) approach indicated that such augmentation of the AMPA receptor function and depolarization by GABA receptors results in prolonged firing that explains the increase in polysynaptic components, which contribute to overall network excitability. Taken together, our data suggest that AMPA receptor enhancement could be a critical determinant of sustained status epilepticus (SE).

6.
Front Cell Neurosci ; 11: 264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912687

RESUMO

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in humans, and is often developed after an initial precipitating brain injury. This form of epilepsy is frequently resistant to pharmacological treatment; therefore, the prevention of TLE is the prospective approach to TLE therapy. The lithium-pilocarpine model in rats replicates some of the main features of TLE in human, including the pathogenic mechanisms of cell damage and epileptogenesis after a primary brain injury. In the present study, we investigated changes in the properties of glutamatergic transmission during the first 3 days after pilocarpine-induced acute seizures in Wistar rats (PILO-rats). Using RT-PCR and electrophysiological techniques, we compared the changes in the temporal cortex (TC) and hippocampus, brain areas differentially affected by seizures. On the first day, we found a transient increase in a ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl d-aspartate (NMDA) receptors in the excitatory synaptic response in pyramidal neurons of the CA1 area of the dorsal hippocampus, but not in the TC. This was accompanied by an increase in the slope of input-output (I/O) curves for fEPSPs recorded in CA1, suggesting an enhanced excitability in AMPARs in this brain area. There was no difference in the AMPA/NMDA ratio in control rats on the third day. We also revealed the alterations in NMDA receptor subunit composition in PILO-rats. The GluN2B/GluN2A mRNA expression ratio increased in the dorsal hippocampus but did not change in the ventral hippocampus or the TC. The kinetics of NMDA-mediated evoked EPSCs in hippocampal neurons was slower in PILO-rats compared with control animals. Ifenprodil, a selective antagonist of GluN2B-containing NMDARs, diminished the area and amplitude of evoked EPSCs in CA1 pyramidal cells more efficiently in PILO-rats compared with control animals. These results demonstrate that PILO-induced seizures lead to more severe alterations in excitatory synaptic transmission in the dorsal hippocampus than in the TC. Seizures affect the relative contribution of AMPA and NMDA receptor conductances in the synaptic response and increase the proportion of GluN2B-containing NMDARs in CA1 pyramidal neurons. These alterations disturb normal circuitry functions in the hippocampus, may cause neuron damage, and may be one of the important pathogenic mechanisms of TLE.

7.
Neuroscience ; 327: 146-55, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27109923

RESUMO

Temporal lobe epilepsy (TLE) is the most common type of epilepsy in humans. The lithium-pilocarpine model in rodents reproduces some of the main features of human TLE. Three-week-old Wistar rats were used in this study. The changes in AMPA receptor subunit composition were investigated in several brain areas, including the medial prefrontal cortex (mPFC), the temporal cortex (TC), and the dorsal (DH) and ventral hippocampus (VH) during the first week following pilocarpine-induced status epilepticus (PILO-induced SE). In the hippocampus, GluA1 and GluA2 mRNA expression slightly decreased after PILO-induced SE and returned to the initial level on the seventh day. We did not detect any significant changes in mRNA expression of the GluA1 and GluA2 subunits in the TC, whereas in the mPFC we observed a significant increase of GluA1 mRNA expression on the third day and a decrease in GluA2 mRNA expression during the entire first week. Accordingly, the GluA1/GluA2 expression ratio increased in the mPFC, and the functional properties of the pyramidal cell excitatory synapses were disturbed. Using whole-cell voltage-clamp recordings, we found that on the third day following PILO-induced SE, isolated mPFC pyramidal neurons showed an inwardly rectifying current-voltage relation of kainate-evoked currents, suggesting the presence of GluA2-lacking calcium-permeable AMPARs (CP-AMPARs). IEM-1460, a selective antagonist of CP-AMPARs, significantly reduced the amplitude of evoked EPSC in pyramidal neurons from mPFC slices on the first and third days, but not on the seventh day. The antagonist had no effects on EPSC amplitude in slices from control animals. Thus, our data demonstrate that PILO-induced SE affects subunit composition of AMPARs in different brain areas, including the mPFC. SE induces transient (up to few days) incorporation of CP-AMPARs in the excitatory synapses of mPFC pyramidal neurons, which may disrupt normal circuitry functions.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neocórtex/efeitos dos fármacos , Receptores de AMPA/metabolismo , Estado Epiléptico/tratamento farmacológico , Sinapses/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Neocórtex/metabolismo , Pilocarpina/toxicidade , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos Wistar , Receptores de AMPA/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA