RESUMO
Nuclear Magnetic Resonance (NMR) spectra of human serum and plasma show, besides metabolites and lipoproteins, two characteristic signals termed GlycA and B arising from the acetyl groups of glycoprotein glycans from acute phase proteins, which constitute good markers for inflammatory processes. Here, we report a comprehensive assignment of glycoprotein glycan NMR signals observed in human serum, showing that GlycA and GlycB signals originate from Neu5Ac and GlcNAc moieties from N-glycans, respectively. Diffusion-edited NMR experiments demonstrate that signal components can be associated with specific acute phase proteins. Conventionally determined concentrations of acute phase glycoproteins correlate well with distinct features in NMR spectra (R2 up to 0.9422, p-value <0.001), allowing the simultaneous quantification of several acute phase inflammation proteins. Overall, a proteo-metabolomics NMR signature of significant diagnostic potential is obtained within 10-20â min acquisition time. This is exemplified in serum samples from COVID-19 and cardiogenic shock patients showing significant changes in several acute phase proteins compared to healthy controls.
Assuntos
Proteínas de Fase Aguda , COVID-19 , Humanos , Proteínas de Fase Aguda/metabolismo , Biomarcadores/metabolismo , Inflamação/metabolismo , Espectroscopia de Ressonância Magnética , Glicoproteínas/metabolismo , Polissacarídeos/químicaRESUMO
Bacterial pathogens have evolved intricate mechanisms to evade the human immune system, including the production of immunomodulatory enzymes. Streptococcus pyogenes serotypes secrete two multi-modular endo-ß-N-acetylglucosaminidases, EndoS and EndoS2, that specifically deglycosylate the conserved N-glycan at Asn297 on IgG Fc, disabling antibody-mediated effector functions. Amongst thousands of known carbohydrate-active enzymes, EndoS and EndoS2 represent just a handful of enzymes that are specific to the protein portion of the glycoprotein substrate, not just the glycan component. Here, we present the cryoEM structure of EndoS in complex with the IgG1 Fc fragment. In combination with small-angle X-ray scattering, alanine scanning mutagenesis, hydrolytic activity measurements, enzyme kinetics, nuclear magnetic resonance and molecular dynamics analyses, we establish the mechanisms of recognition and specific deglycosylation of IgG antibodies by EndoS and EndoS2. Our results provide a rational basis from which to engineer novel enzymes with antibody and glycan selectivity for clinical and biotechnological applications.
Assuntos
Glicosídeo Hidrolases , Evasão da Resposta Imune , Humanos , Glicosídeo Hidrolases/metabolismo , Streptococcus pyogenes , Imunoglobulina G , Polissacarídeos/metabolismoRESUMO
Accelerated spontaneous deamidation of asparagine 373 and subsequent conversion into an isoaspartate has been shown to attenuate the binding of histo blood group antigens (HBGAs) to the protruding domain (P-domain) of the capsid protein of a prevalent norovirus strain (GII.4). Here, we link an unusual backbone conformation of asparagine 373 to its fast site-specific deamidation. NMR spectroscopy and ion exchange chromatography have been used to monitor the deamidation reaction of P-domains of two closely related GII.4 norovirus strains, specific point mutants, and control peptides. MD simulations over several microseconds have been instrumental to rationalize the experimental findings. While conventional descriptors such as available surface area, root-mean-square fluctuations, or nucleophilic attack distance fail as explanations, the population of a rare syn-backbone conformation distinguishes asparagine 373 from all other asparagine residues. We suggest that stabilization of this unusual conformation enhances the nucleophilicity of the backbone nitrogen of aspartate 374, in turn accelerating the deamidation of asparagine 373. This finding should be relevant to the development of reliable prediction algorithms for sites of rapid asparagine deamidation in proteins.
Assuntos
Proteínas do Capsídeo , Norovirus , Proteínas do Capsídeo/química , Sítios de Ligação , Asparagina/metabolismo , Norovirus/genética , Domínios Proteicos , Ligação ProteicaRESUMO
We have used NMR experiments to explore the binding of selected glycans and glycomimetics to the SARS CoV-2 spike glycoprotein (S-protein) and to its receptor binding domain (RBD). STD NMR experiments confirm the binding of sialoglycans to the S-protein of the prototypic Wuhan strain virus and yield dissociation constants in the millimolar range. The absence of STD effects for sialoglycans in the presence of the Omicron/BA.1 S-protein reflects a loss of binding as a result of S-protein evolution. Likewise, no STD effects are observed for the deletion mutant Δ143-145 of the Wuhan S-protein, thus supporting localization of the binding site in the N-terminal domain (NTD). The glycomimetics Oseltamivir and Zanamivir bind weakly to the S-protein of both virus strains. Binding of blood group antigens to the Wuhan S-protein cannot be confirmed by STD NMR. Using 1 H,15 N TROSY HSQC-based chemical shift perturbation (CSP) experiments, we excluded binding of any of the ligands studied to the RBD of the Wuhan S-protein. Our results put reported data on glycan binding into perspective and shed new light on the potential role of glycan-binding to the S-protein.
Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave , Humanos , Glicoproteína da Espícula de Coronavírus , Sítios de Ligação , Polissacarídeos , Espectroscopia de Ressonância Magnética , Ligação ProteicaRESUMO
The development of antibodies that target specific glycan structures on cancer cells or human pathogens poses a significant challenge due to the immense complexity of naturally occurring glycans. Automated glycan assembly enables the production of structurally homogeneous glycans in amounts that are difficult to derive from natural sources. Nanobodies (Nbs) are the smallest antigen-binding domains of heavy-chain-only antibodies (hcAbs) found in camelids. To date, the development of glycan-specific Nbs using synthetic glycans has not been reported. Here, we use defined synthetic glycans for alpaca immunization to elicit glycan-specific hcAbs, and describe the identification, isolation, and production of a Nb specific for the tumor-associated carbohydrate antigen Globo-H. The Nb binds the terminal fucose of Globo-H and recognizes synthetic Globo-H in solution and native Globo-H on breast cancer cells with high specificity. These results demonstrate the potential of our approach for generating glycan-targeting Nbs to be used in biomedical and biotechnological applications.
Assuntos
Anticorpos de Domínio Único , Anticorpos , Fucose , Humanos , Imunização , Polissacarídeos , Anticorpos de Domínio Único/químicaRESUMO
Norovirus capsids are icosahedral particles composed of 90 dimers of the major capsid protein VP1. The C-terminus of the VP1 proteins forms a protruding (P)-domain, mediating receptor attachment, and providing a target for neutralizing antibodies. NMR and native mass spectrometry directly detect P-domain monomers in solution for murine (MNV) but not for human norovirus (HuNoV). We report that the binding of glycochenodeoxycholic acid (GCDCA) stabilizes MNV-1 P-domain dimers (P-dimers) and induces long-range NMR chemical shift perturbations (CSPs) within loops involved in antibody and receptor binding, likely reflecting corresponding conformational changes. Global line shape analysis of monomer and dimer cross-peaks in concentration-dependent methyl TROSY NMR spectra yields a dissociation rate constant koff of about 1 s-1 for MNV-1 P-dimers. For structurally closely related HuNoV GII.4 Saga P-dimers a value of about 10-6 s-1 is obtained from ion-exchange chromatography, suggesting essential differences in the role of GCDCA as a cofactor for MNV and HuNoV infection.
Assuntos
Infecções por Caliciviridae , Norovirus , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Camundongos , Norovirus/química , Norovirus/metabolismoRESUMO
NMR spectroscopy allows the study of biomolecules in close-to-native conditions. Structural information can be inferred from the NMR spectra when an assignment is available. Protein assignment is usually a time-consuming task, being specially challenging in the case of large, supramolecular systems. Here, we present an extension of existing state-of-the-art strategies for methyl group assignment that partially overcomes signal overlapping and other difficulties associated to isolated methyl groups. Our approach exploits the ability of proteins to populate two or more conformational states, allowing for unique NOE restraints in each protein conformer. The method is compatible with automated assignment algorithms, granting assignments beyond the limits of a single protein state. The approach also benefits from long-range structural restraints obtained from metal-induced pseudocontact shifts (PCS) and paramagnetic relaxation enhancements (PREs). We illustrate the method with the complete assignment of the 199 methyl groups of a MILproSVproSAT methyl-labeled sample of the UDP-glucose pyrophosphorylase enzyme from Leishmania major (LmUGP). Protozoan parasites of the genus Leishmania causes Leishmaniasis, a neglected disease affecting over 12 million people worldwide. LmUGP is responsible for the de novo biosynthesis of uridine diphosphate-glucose, a precursor in the biosynthesis of the dense surface glycocalyx involved in parasite survival and infectivity. NMR experiments with LmUGP and related enzymes have the potential to unravel new insights in the host resistance mechanisms used by Leishmania major. Our efforts will help in the development of selective and efficient drugs against Leishmania.
Assuntos
Glucose , Proteínas , Humanos , Íons , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/químicaRESUMO
The protruding domain (P-domain) of the murine norovirus (MNV) capsid protein VP1 is essential for infection. It mediates receptor binding and attachment of neutralizing antibodies. Protein NMR studies into interactions of the P-domain with ligands will yield insights not easily available from other biophysical techniques and will extend our understanding of MNV attachment to host cells. Such studies require at least partial NMR assignments. Here, we describe the assignment of about 70% of the Ala, Ile, LeuproS, Met, and ValproS methyl groups. An unfavorable distribution of methyl group resonance signals prevents complete assignment based exclusively on 4D HMQC-NOESY-HMQC experiments, yielding assignment of only 55 out of 100 methyl groups. Therefore, we created point mutants and measured pseudo contact shifts, extending and validating assignments based on methyl-methyl NOEs. Of note, the P-domains are present in two different forms caused by an approximate equal distribution of trans- and cis-configured proline residues in position 361.
Assuntos
Norovirus , Animais , Proteínas do Capsídeo/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Norovirus/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação ProteicaRESUMO
Infection with human noroviruses requires attachment to histo blood group antigens (HBGAs) via the major capsid protein VP1 as a primary step. Several crystal structures of VP1 protruding domain dimers, so called P-dimers, complexed with different HBGAs have been solved to atomic resolution. Corresponding binding affinities have been determined for HBGAs and other glycans exploiting different biophysical techniques, with mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy being most widely used. However, reported binding affinities are inconsistent. At the extreme, for the same system MS detects binding whereas NMR spectroscopy does not, suggesting a fundamental source of error. In this short essay, we will explain the reason for the observed differences and compile reliable and reproducible binding affinities. We will then highlight how a combination of MS techniques and NMR experiments affords unique insights into the process of HBGA binding by norovirus capsid proteins.
Assuntos
Antígenos de Grupos Sanguíneos , Norovirus , Sítios de Ligação , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Humanos , Norovirus/química , Norovirus/metabolismo , Polissacarídeos/metabolismo , Ligação ProteicaRESUMO
Coronavirus disease 2019 (COVID-19) is a viral infection affecting multiple organ systems of great significance for metabolic processes. Thus, there is increasing interest in metabolic and lipoprotein signatures of the disease, and early analyses have demonstrated a metabolic pattern typical for atherosclerotic and hepatic damage in COVID-19 patients. However, it remains unclear whether this is specific for COVID-19 and whether the observed signature is caused by the disease or rather represents an underlying risk factor. To answer this question, we have analyzed 482 serum samples using nuclear magnetic resonance metabolomics, including longitudinally collected samples from 12 COVID-19 and 20 cardiogenic shock intensive care patients, samples from 18 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody-positive individuals, and single time point samples from 58 healthy controls. COVID-19 patients showed a distinct metabolic serum profile, including changes typical for severe dyslipidemia and a deeply altered metabolic status compared with healthy controls. Specifically, very-low-density lipoprotein and intermediate-density lipoprotein particles and associated apolipoprotein B and intermediate-density lipoprotein cholesterol were significantly increased, whereas cholesterol and apolipoprotein A2 were decreased. Moreover, a similarly perturbed profile was apparent when compared with other patients with cardiogenic shock who are in the intensive care unit when looking at a 1-week time course, highlighting close links between COVID-19 and lipid metabolism. The metabolic profile of COVID-19 patients distinguishes those from healthy controls and also from patients with cardiogenic shock. In contrast, anti-SARS-CoV-2 antibody-positive individuals without acute COVID-19 did not show a significantly perturbed metabolic profile compared with age- and sex-matched healthy controls, but SARS-CoV-2 antibody-titers correlated significantly with metabolic parameters, including levels of glycine, ApoA2, and small-sized low- and high-density lipoprotein subfractions. Our data suggest that COVID-19 is associated with dyslipidemia, which is not observed in anti-SARS-CoV-2 antibody-positive individuals who have not developed severe courses of the disease. This suggests that lipoprotein profiles may represent a confounding risk factor for COVID-19 with potential for patient stratification.
RESUMO
Infection by the humannoroviruses (hNoV), for the vast majority of strains, requires attachment of the viral capsid to histo blood group antigens (HBGAs). The HBGA-binding pocket is formed by dimers of the protruding domain (P dimers) of the capsid protein VP1. Several studies have focused on HBGA binding to P dimers, reporting binding affinities and stoichiometries. However, nuclear magnetic resonance spectroscopy (NMR) and native mass spectrometry (MS) analyses yielded incongruent dissociation constants (KD) for the binding of HBGAs to P dimers and, in some cases, disagreed on whether glycans bind at all. We hypothesized that glycan clustering during electrospray ionization in native MS critically depends on the physicochemical properties of the protein studied. It follows that the choice of a reference protein is crucial. We analysed carbohydrate clustering using various P dimers and eight non-glycan binding proteins serving as possible references. Data from native and ion mobility MS indicate that the mass fraction of ß-sheets has a strong influence on the degree of glycan clustering. Therefore, the determination of specific glycan binding affinities from native MS must be interpreted cautiously.
RESUMO
Noroviruses are the major cause of viral gastroenteritis and re-emerge worldwide every year, with GII.4 currently being the most frequent human genotype. The norovirus capsid protein VP1 is essential for host immune response. The P domain mediates cell attachment via histo blood-group antigens (HBGAs) in a strain-dependent manner but how these glycan-interactions actually relate to cell entry remains unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) is used to investigate glycan-induced protein dynamics in P dimers of different strains, which exhibit high structural similarity but different prevalence in humans. While the almost identical strains GII.4 Saga and GII.4 MI001 share glycan-induced dynamics, the dynamics differ in the emerging GII.17 Kawasaki 308 and rare GII.10 Vietnam 026 strain. The structural aspects of glycan binding to fully deamidated GII.4 P dimers have been investigated before. However, considering the high specificity and half-life of N373D under physiological conditions, large fractions of partially deamidated virions with potentially altered dynamics in their P domains are likely to occur. Therefore, we also examined glycan binding to partially deamidated GII.4 Saga and GII.4 MI001 P dimers. Such mixed species exhibit increased exposure to solvent in the P dimer upon glycan binding as opposed to pure wildtype. Furthermore, deamidated P dimers display increased flexibility and a monomeric subpopulation. Our results indicate that glycan binding induces strain-dependent structural dynamics, which are further altered by N373 deamidation, and hence hint at a complex role of deamidation in modulating glycan-mediated cell attachment in GII.4 strains.
Assuntos
Proteínas do Capsídeo/química , Simulação de Dinâmica Molecular , Polissacarídeos/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Aminoácidos , Sítios de Ligação , Humanos , Norovirus , Ligação Proteica , Conformação ProteicaRESUMO
Glycan-protein interactions are highly specific yet transient, rendering glycans ideal recognition signals in a variety of biological processes. In human norovirus (HuNoV) infection, histo-blood group antigens (HBGAs) play an essential but poorly understood role. For murine norovirus infection (MNV), sialylated glycolipids or glycoproteins appear to be important. It has also been suggested that HuNoV capsid proteins bind to sialylated ganglioside head groups. Here, we study the binding of HBGAs and sialoglycans to HuNoV and MNV capsid proteins using NMR experiments. Surprisingly, the experiments show that none of the norovirus P-domains bind to sialoglycans. Notably, MNV P-domains do not bind to any of the glycans studied, and MNV-1 infection of cells deficient in surface sialoglycans shows no significant difference compared to cells expressing respective glycans. These findings redefine glycan recognition by noroviruses, challenging present models of infection.
Assuntos
Antígenos de Grupos Sanguíneos/imunologia , Infecções por Caliciviridae , Proteínas do Capsídeo/imunologia , Norovirus/imunologia , Polissacarídeos , Animais , Sítios de Ligação , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Ligação ViralRESUMO
Single glycan-protein interactions are often weak, such that glycan binding partners commonly utilize multiple, spatially defined binding sites to enhance binding avidity and specificity. Current array technologies usually neglect defined multivalent display. Laser-based array synthesis technology allows for flexible and rapid on-surface synthesis of different peptides. By combining this technique with click chemistry, neo-glycopeptides were produced directly on a functionalized glass slide in the microarray format. Density and spatial distribution of carbohydrates can be tuned, resulting in well-defined glycan structures for multivalent display. The two lectins concanavalin A and langerin were probed with different glycans on multivalent scaffolds, revealing strong spacing-, density-, and ligand-dependent binding. In addition, we could also measure the surface dissociation constant. This approach allows for a rapid generation, screening, and optimization of a multitude of multivalent scaffolds for glycan binding.
Assuntos
Glicopeptídeos/análise , Glicopeptídeos/síntese química , Análise em Microsséries , Polissacarídeos/análise , Polissacarídeos/síntese química , Sítios de Ligação , HumanosRESUMO
Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be essential for infection, although how this binding event promotes infection is unknown. Recent studies have shown that 60% of all GII.4 epidemic strains may undergo a spontaneous post-translational modification (PTM) in an amino acid located adjacent to the binding pocket for HBGAs. This transformation proceeds with an estimated half-life of 1-2 days under physiological conditions, dramatically affecting HBGA recognition. The surface-exposed position of this PTM and its sequence conservation suggests a relevant role in immune escape and host-cell recognition. As a first step towards the understanding of the biological implications of this PTM at atomic resolution, we report the complete assignment of methyl resonances of a MILProSVProSA methyl-labeled sample of a 72 kDa protruding domain from a GII.4 Saga human norovirus strain. Assignments were obtained from methyl-methyl NOESY experiments combined with site-directed mutagenesis and automated assignment. This data provides the basis for a detailed characterization of the PTM-driven modulation of immune recognition in human norovirus on a molecular level.
Assuntos
Aminoácidos/química , Norovirus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Virais/química , Cristalografia por Raios X , Humanos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Multimerização ProteicaRESUMO
Bile acids have been reported as important cofactors promoting human and murine norovirus (NoV) infections in cell culture. The underlying mechanisms are not resolved. Through the use of chemical shift perturbation (CSP) NMR experiments, we identified a low-affinity bile acid binding site of a human GII.4 NoV strain. Long-timescale MD simulations reveal the formation of a ligand-accessible binding pocket of flexible shape, allowing the formation of stable viral coat protein-bile acid complexes in agreement with experimental CSP data. CSPâ NMR experiments also show that this mode of bile acid binding has a minor influence on the binding of histo-blood group antigens and vice versa. STDâ NMR experiments probing the binding of bile acids to virus-like particles of seven different strains suggest that low-affinity bile acid binding is a common feature of human NoV and should therefore be important for understanding the role of bile acids as cofactors in NoV infection.
Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas do Capsídeo/metabolismo , Norovirus/metabolismo , Animais , Ácidos e Sais Biliares/química , Sítios de Ligação , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/química , Dimerização , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
Attachment of human noroviruses to histo blood group antigens (HBGAs) is essential for infection, but how this binding event promotes the infection of host cells is unknown. Here, we employ protein NMR experiments supported by mass spectrometry and crystallography to study HBGA binding to the P-domain of a prevalent virus strain (GII.4). We report a highly selective transformation of asparagine 373, located in an antigenic loop adjoining the HBGA binding site, into an iso-aspartate residue. This spontaneous post-translational modification (PTM) proceeds with an estimated half-life of a few days at physiological temperatures, independent of the presence of HBGAs but dramatically affecting HBGA recognition. Sequence conservation and the surface-exposed position of this PTM suggest an important role in infection and immune recognition for many norovirus strains.
Assuntos
Asparagina/química , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/química , Ácido Isoaspártico/química , Norovirus/metabolismo , Polissacarídeos/química , Processamento de Proteína Pós-Traducional , Asparagina/genética , Asparagina/metabolismo , Sítios de Ligação , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Ácido Isoaspártico/genética , Ácido Isoaspártico/metabolismo , Cinética , Modelos Moleculares , Norovirus/genética , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Norovirus infection is the major cause of nonbacterial gastroenteritis in humans and has been the subject of numerous studies investigating the virus's biophysical properties and biochemical function with the aim of deriving novel and highly potent entry inhibitors to prevent infection. Recently, it has been shown that the protruding P domain dimer (P-dimer) of a GII.10 Norovirus strain exhibits two new binding sites for l-fucose in addition to the canonical binding sites. Thus, these sites provide a novel target for the design of multivalent fucose ligands as entry inhibitors of norovirus infections. In this current study, a first generation of multivalent fucose-functionalized glycomacromolecules was synthesized and applied as model structures to investigate the potential targeting of fucose binding sites in human norovirus P-dimer. Following previously established solid phase polymer synthesis, eight precision glycomacromolecules varying in number and position of fucose ligands along an oligo(amidoamine) backbone were obtained and then used in a series of binding studies applying native MS, NMR, and X-ray crystallography. We observed only one fucose per glycomacromolecule binding to one P-dimer resulting in similar binding affinities for all fucose-functionalized glycomacromolecules, which based on our current findings we attribute to the overall size of macromolecular ligands and possibly to steric hindrance.
Assuntos
Antivirais/síntese química , Proteínas do Capsídeo/metabolismo , Fucose/química , Norovirus/efeitos dos fármacos , Antivirais/farmacologia , Proteínas do Capsídeo/química , Ligantes , Simulação de Acoplamento Molecular , Ligação ProteicaRESUMO
Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer difference nuclear magnetic resonance spectroscopy, native mass spectrometry (MS) and surface plasmon resonance spectroscopy were used to characterize binding epitopes, affinities, stoichiometry and dynamics, focusing on 3'-sialyllactose, the GM3 ganglioside saccharide and B antigen. Binding was observed for 3'-sialyllactose and various HBGAs following a multistep binding process. Intrinsic affinities (Kd) of fucose, 3'-sialyllactose and B antigen were determined for the individual binding steps. Stronger affinities were observed for B antigen over 3'-sialyllactose and fucose, which bound in the mM range. Binding stoichiometry was analyzed by native MS showing the presence of four B antigens or two 3'-sialyllactose in the complex. Epitope mapping of 3'-sialyllactose revealed direct interaction of α2,3-linked sialic acid with the P domain. The ability of HuNoV to engage multiple carbohydrates emphasizes the multivalent nature of norovirus glycan-specificity. Our findings reveal direct binding of a GII.4 HuNoV P dimer to α2,3-linked sialic acid and support a broader role of ganglioside binding in norovirus infection.