Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Materials (Basel) ; 17(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39203065

RESUMO

An X-ray analysis of exfoliated MoS2, produced by means of microwave-assisted liquid-phase exfoliation (LPE) from bulk powder in 1-methyl-2-pyrrolidone (NMP) or acetonitrile (ACN) + 1-methyl-2-pyrrolidone (NMP) solvents, has revealed distinct structural differences between the bulk powder and the microwave-exfoliated samples. Specifically, we performed X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements to identify the elements of our exfoliated sample deposited on a Si substrate by drop-casting, as well as their chemical state and its structural crystalline phase. In the exfoliated sample, the peaks pattern only partially resemble the theoretical Miller indices for MoS2. In contrast, the bulk powder's spectrum shows the characteristic peaks of the 2H polytype of MoS2, but with some broadening. Notable is the retention of partial crystallinity in the post-exfoliation phases, specifically in the normal-to-plane orientation, thus demonstrating the effectiveness of microwave-assisted techniques in producing 2D MoS2 and attaining desirable properties for the material. XPS measurements confirm the success of the exfoliation procedure and that the exfoliated sample retains its original structure. The exfoliation process has been optimized to maintain the structural integrity of MoS2 while enhancing its surface area and electrochemical performance, thereby making it a promising material for advanced electronic and optoelectronic applications ranging from energy storage to sensing devices under ambient conditions.

2.
Gels ; 10(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38786230

RESUMO

Viscoelastic relaxation measurements on styrene-butadiene rubbers (SBRs) doped with carbon nanotube (CNT) at different concentrations around the sol-gel transition show the time-temperature superposition (TTS). This process is described in terms of the mode coupling theory (MCT) approach to viscoelasticity by considering the frequency behavior of the loss modulus E″(ω) and showing that the corresponding TTS is linked to ω1/2 decay. From the analysis of the obtained data, we observe that the interaction between SBRs and CNT determines different levels of decay according to their concentration. Systems with the lowest CNT concentration are only characterized in the studied T-range by their fragile glass-forming behavior. However, at a specific temperature TL, those with the highest CNT concentration show a crossover towards pure Arrhenius that, according to the MCT, indicates the presence of kinetic glass transition (KGT), where system response functions are characterized by scaling behaviors.

3.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38716848

RESUMO

The bulk water density data are studied in a very large temperature-pressure range, from stable liquid to glass in the frame of water polymorphism. Because this thermodynamic variable evidences a crossover T*, above which the hydrogen bond (HB) is unable to arrange tetrahedral networks, the T-dependence of their isobars was considered. Such an analysis also shows pressure, P*, around which their thermal behaviors are completely different: concave below P* (with maxima and minima) and convex above (without extremes). Having ρ's measured values of the bimodal structures of the liquid phase, HDL (ρHDL), made of not-bonded monomers (ρNHB) and partially bonded dimers plus trimers (ρNHB), and LDL tetramers (ρLDL) the isobars of the relative distributions [W(P, T)] of the three species (WLDL, WPHB, and WNHB) have been evaluated. The results were studied by means of a logistic function (LF) that details the evolutions of the relative polpulations of the water LDL and HDL phases by decreasing T (for the isobars, in the range of 0.1-400 MPa). The LFs analysis obtained by proposing a full connection between liquid water from its supercooled metastable phase to the stable up to the boiling temperature identifies the Widom line quite satisfactorily and fully supports the presence of the liquid-liquid critical point in the deep supercooled region, located at about 190 K and in the range 200 > P > 180 MPa.

4.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768326

RESUMO

Interactions between nanoparticles (NPs) determine their self-organization and dynamic processes. In these systems, a quantitative description of the interparticle forces is complicated by the presence of the hydrophobic effect (HE), treatable only qualitatively, and due to the competition between the hydrophobic and hydrophilic forces. Recently, instead, a sort of crossover of HE from hydrophilic to hydrophobic has been experimentally observed on a local scale, by increasing the temperature, in pure confined water and studying the occurrence of this crossover in different water-methanol solutions. Starting from these results, we then considered the idea of studying this process in different nanoparticle solutions. By using photon correlation spectroscopy (PCS) experiments on dendrimer with OH terminal groups (dissolved in water and methanol, respectively), we show the existence of this hydrophobic-hydrophilic crossover with a well defined temperature and nanoparticle volume fraction dependence. In this frame, we have used the mode coupling theory extended model to evaluate the measured time-dependent density correlation functions (ISFs). In this context we will, therefore, show how the measured spectra are strongly dependent on the specificity of the interactions between the particles in solution. The observed transition demonstrates that just the HE, depending sensitively on the system thermodynamics, determines the hydrophobic and hydrophilic interaction properties of the studied nanostructures surface.


Assuntos
Metanol , Água , Suspensões , Interações Hidrofóbicas e Hidrofílicas , Água/química , Termodinâmica
5.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012672

RESUMO

This contribution aims at providing a critical overview of experimental results for the sorption of low molecular weight compounds in the Cu-BTC Metal-Organic Framework (MOF) and of their interpretation using available and new, specifically developed, theoretical approaches. First, a literature review of experimental results for the sorption of gases and vapors is presented, with particular focus on the results obtained from vibrational spectroscopy techniques. Then, an overview of theoretical models available in the literature is presented starting from semiempirical theoretical approaches suitable to interpret the adsorption thermodynamics of gases and vapors in Cu-BTC. A more detailed description is provided of a recently proposed Lattice Fluid approach, the Rigid Adsorbent Lattice Fluid (RALF) model. In addition, to deal with the cases where specific self- and cross-interactions (e.g., H-bonding, Lewis acid/Lewis base interactions) play a role, a modification of the RALF model, i.e., the RALFHB model, is introduced here for the first time. An extension of both RALF and RALFHB is also presented to cope with the cases in which the heterogeneity of the rigid adsorbent displaying a different kind of adsorbent cages is of relevance, as it occurs for the adsorption of some low molecular weight substances in Cu-BTC MOF.


Assuntos
Estruturas Metalorgânicas , Compostos Organometálicos , Adsorção , Cobre/química , Gases , Estruturas Metalorgânicas/química , Metais , Peso Molecular , Compostos Organometálicos/química , Termodinâmica
6.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628124

RESUMO

In the recent years a considerable effort has been devoted to foster the understanding of the basic mechanisms underlying the dynamical arrest that is involved in glass forming in supercooled liquids and in the sol-gel transition. The elucidation of the nature of such processes represents one of the most challenging unsolved problems in the field of material science. In this context, two important theories have contributed significantly to the interpretation of these phenomena: the Mode-Coupling theory (MCT) and the Percolation theory (PT). These theories are rooted on the two pillars of statistical physics, universality and scale laws, and their original formulations have been subsequently modified to account for the fundamental concepts of Energy Landscape (EL) and of the universality of the fragile to strong dynamical crossover (FSC). In this review, we discuss experimental and theoretical results, including Molecular Dynamics (MD) simulations, reported in the literature for colloidal and polymer systems displaying both glass and sol-gel transitions. Special focus is dedicated to the analysis of the interferences between these transitions and on the possible interplay between MCT and PT. By reviewing recent theoretical developments, we show that such interplay between sol-gel and glass transitions may be interpreted in terms of the extended F13 MCT model that describes these processes based on the presence of a glass-glass transition line terminating in an A3 cusp-like singularity (near which the logarithmic decay of the density correlator is observed). This transition line originates from the presence of two different amorphous structures, one generated by the inter-particle attraction and the other by the pure repulsion characteristic of hard spheres. We show here, combining literature results with some new results, that such a situation can be generated, and therefore experimentally studied, by considering colloidal-like particles interacting via a hard core plus an attractive square well potential. In the final part of this review, scaling laws associated both to MCT and PT are applied to describe, by means of these two theories, the specific viscoelastic properties of some systems.


Assuntos
Vidro , Vitrificação
7.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299171

RESUMO

NMR spectroscopy is used in the temperature range 180-350 K to study the local order and transport properties of pure liquid water (bulk and confined) and its solutions with glycerol and methanol at different molar fractions. We focused our interest on the hydrophobic effects (HE), i.e., the competition between hydrophilic and hydrophobic interactions. Nowadays, compared to hydrophilicity, little is known about hydrophobicity. Therefore, the main purpose of this study is to gain new information about hydrophobicity. As the liquid water properties are dominated by polymorphism (two coexisting liquid phases of high and low density) due to hydrogen bond interactions (HB), creating (especially in the supercooled regime) the tetrahedral networking, we focused our interest to the HE of these structures. We measured the relaxation times (T1 and T2) and the self-diffusion (DS). From these times, we took advantage of the NMR property to follow the behaviors of each molecular component (the hydrophilic and hydrophobic groups) separately. In contrast, DS is studied in terms of the Adam-Gibbs model by obtaining the configurational entropy (Sconf) and the specific heat contributions (CP,conf). We find that, for the HE, all of the studied quantities behave differently. For water-glycerol, the HB interaction is dominant for all conditions; water-methanol, two different T-regions above and below 265 K are observable, dominated by hydrophobicity and hydrophilicity, respectively. Below this temperature, where the LDL phase and the HB network develops and grows, with the times and CP,conf change behaviors leading to maxima and minima. Above it, the HB becomes weak and less stable, the HDL dominates, and hydrophobicity determines the solution.


Assuntos
Entropia , Interações Hidrofóbicas e Hidrofílicas , Termodinâmica , Água/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Soluções , Temperatura
8.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073898

RESUMO

Chitosan (CS) is largely employed in environmental applications as an adsorbent of anionic dyes, due to the presence in its chemical structure of amine groups that, if protonated, act as adsorbing sites for negatively charged molecules. Efficient adsorption of both cationic and anionic dyes is thus not achievable with a pristine chitosan adsorbent, but it requires the combination of two or more components. Here, we show that simultaneous adsorption of cationic and anionic dyes can be obtained by embedding Linde Type A (LTA) zeolite particles in a crosslinked CS-based aerogel. In order to optimize dye removal ability of the hybrid aerogel, we target the crosslinker concentration so that crosslinking is mainly activated during the thermal treatment after the fast freezing of the CS/LTA mixture. The adsorption of isotherms is obtained for different CS/LTA weight ratios and for different types of anionic and cationic dyes. Irrespective of the formulation, the Langmuir model was found to accurately describe the adsorption isotherms. The optimal tradeoff in the adsorption behavior was obtained with the CS/LTA aerogel (1:1 weight ratio), for which the maximum uptake of indigo carmine (anionic dye) and rhodamine 6G (cationic dye) is 103 and 43 mg g-1, respectively. The behavior observed for the adsorption capacity and energy cannot be rationalized as a pure superposition of the two components, but suggests that reciprocal steric effects, chemical heterogeneity, and molecular interactions between CS and LTA zeolite particles play an important role.


Assuntos
Ânions/química , Cátions/química , Quitosana/química , Corantes/química , Géis/química , Purificação da Água/métodos , Zeolitas/química , Adsorção , Reagentes de Ligações Cruzadas , Géis/síntese química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Água/química , Poluentes Químicos da Água/química
9.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809376

RESUMO

The diffusion process of water molecules within a polyetherimide (PEI) glassy matrix has been analyzed by combining the experimental analysis of water sorption kinetics performed by FTIR spectroscopy with theoretical information gathered from Molecular Dynamics simulations and with the expression of water chemical potential provided by a non-equilibrium lattice fluid model able to describe the thermodynamics of glassy polymers. This approach allowed us to construct a convincing description of the diffusion mechanism of water in PEI providing molecular details of the process related to the effects of the cross- and self-hydrogen bonding established in the system on the dynamics of water mass transport.


Assuntos
Transporte Biológico/genética , Polímeros/química , Termodinâmica , Água/química , Difusão , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Polímeros/metabolismo
10.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375617

RESUMO

Molecular mechanisms for N2 fixation (solar NH3) and CO2 conversion to C2+ products in enzymatic conversion (nitrogenase), electrocatalysis, metal complexes and plasma catalysis are analyzed and compared. It is evidenced that differently from what is present in thermal and plasma catalysis, the electrocatalytic path requires not only the direct coordination and hydrogenation of undissociated N2 molecules, but it is necessary to realize features present in the nitrogenase mechanism. There is the need for (i) a multi-electron and -proton simultaneous transfer, not as sequential steps, (ii) forming bridging metal hydride species, (iii) generating intermediates stabilized by bridging multiple metal atoms and (iv) the capability of the same sites to be effective both in N2 fixation and in COx reduction to C2+ products. Only iron oxide/hydroxide stabilized at defective sites of nanocarbons was found to have these features. This comparison of the molecular mechanisms in solar NH3 production and CO2 reduction is proposed to be a source of inspiration to develop the next generation electrocatalysts to address the challenging transition to future sustainable energy and chemistry beyond fossil fuels.


Assuntos
Amônia/química , Dióxido de Carbono/química , Nitrogênio/química , Sistema Solar , Amônia/síntese química , Catálise , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Nitrogenase/química , Nitrogenase/metabolismo , Oxirredução , Gases em Plasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA