Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurooncol ; 131(2): 233-244, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770278

RESUMO

Extracellular vesicles (EVs) play key roles in glioblastoma (GBM) biology and represent novel sources of biomarkers that are detectable in the peripheral circulation. Despite this notionally non-invasive approach to assess GBM tumours in situ, a comprehensive GBM EV protein signature has not been described. Here, EVs secreted by six GBM cell lines were isolated and analysed by quantitative high-resolution mass spectrometry. Overall, 844 proteins were identified in the GBM EV proteome, of which 145 proteins were common to EVs secreted by all cell lines examined; included in the curated EV compendium (Vesiclepedia_559; http://microvesicles.org ). Levels of 14 EV proteins significantly correlated with cell invasion (invadopodia production; r2 > 0.5, p < 0.05), including several proteins that interact with molecules responsible for regulating invadopodia formation. Invadopodia, actin-rich membrane protrusions with proteolytic activity, are associated with more aggressive disease and are sites of EV release. Gene levels corresponding to invasion-related EV proteins showed that five genes (annexin A1, actin-related protein 3, integrin-ß1, insulin-like growth factor 2 receptor and programmed cell death 6-interacting protein) were significantly higher in GBM tumours compared to normal brain in silico, with common functions relating to actin polymerisation and endosomal sorting. We also show that Cavitron Ultrasonic Surgical Aspirator (CUSA) washings are a novel source of brain tumour-derived EVs, demonstrated by particle tracking analysis, TEM and proteome profiling. Quantitative proteomics corroborated the high levels of proposed invasion-related proteins in EVs enriched from a GBM compared to low-grade astrocytoma tumour. Large-scale clinical follow-up of putative biomarkers, particularly the proposed survival marker annexin A1, is warranted.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Proteoma/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/patologia , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Proteômica
2.
J Neuropathol Exp Neurol ; 74(5): 425-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25853691

RESUMO

Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5ß1, may be useful for treatment of patients with GBM.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Proteínas de Membrana/metabolismo , Invasividade Neoplásica/patologia , Anexina A1/genética , Anexina A1/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteômica/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas em Tandem , Transfecção
3.
J Proteomics ; 75(5): 1590-9, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22172953

RESUMO

The proposed anticancer drug LY294002, inhibits phosphoinositide-3 kinase (PI3K) that initiates a signalling pathway often activated in colorectal cancer (CRC). The effects of LY294002 (10 µM, 48 h) on the cytosolic, mitochondrial and nuclear proteomes of human HT-29 CRC cells have been determined using iTRAQ (isobaric tag for relative and absolute quantitation) and tandem mass spectrometry (MS/MS). Analysis of cells treated with LY294002 identified 26 differentially abundant proteins that indicate several mechanisms of action. The majority of protein changes were directly or indirectly associated with Myc and TNF-α, previously implicated in CRC progression. LY294002 decreased the levels of 6 aminoacyl-tRNA synthetases (average 0.39-fold) required for protein translation, 5 glycolytic enzymes (average 0.37-fold) required for ATP synthesis, and 3 chaperones required for protein folding. There was a 3.2-fold increase in lysozyme C involved in protein-glycoside hydrolysis. LY294002 increased cytosolic p53 with a concomitant decrease in nuclear p53, suggesting transfer of p53 to the cytosol where apoptosis might be initiated via the intrinsic mitochondrial pathway. Protein changes described here suggest that the anti-angiogenic effects of LY294002 may be related to p53; the mutational status of p53 in CRC may be an important determinant of the efficacy of PI3K inhibitors for treatment.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Cromonas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Trifosfato de Adenosina/biossíntese , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA