Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38867675

RESUMO

Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells communicate via endocrine and paracrine signaling mechanisms to maintain structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels modulates the functions of all three cell types. The last two decades have witnessed pivotal advances in understanding of Ca2+ channel function and regulation in glomerular cells, particularly non-voltage gated Ca2+ channels, in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage gated Ca2+ channel signaling in glomerular capillary endothelium, mesangial cells and podocytes. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-D-aspartate receptors and purinergic 2X receptors also are discussed. This update of Ca2+ channel functions in the renal corpuscle and their cellular signaling cascades is intended to inform development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.

2.
Gerontol Geriatr Med ; 10: 23337214241234737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410616

RESUMO

Objective: This study tested the hypothesis that healthy aging attenuates cognitive practice effects and, consequently, limits the familiarity-associated reductions in heart rate (HR) and breathing frequency (BF) responses during retesting. Methods: Twenty-one cognitively normal older and younger adults (65 ± 2 vs. 26 ± 1 years old) participated in the study. Mini-Mental State Examination (MMSE), Digit-Span-Test (DST), Trail Making Test (TMT-B), and California Verbal Learning Test (CVLT-II) were administered twice at 3-week intervals, while HR and BF were monitored by electrocardiography and plethysmography, respectively. Results: Cognitive performances were not affected by the age factor, and the retest factor only affected CVLT-II. HR and BF increased only in the younger adults (p < .01) during cognitive tests; retesting attenuated these responses (retest factor p < .01). Long-delay free-recall in CVLT-II was unchanged in cognitively normal older versus younger adults. Healthy aging did not diminish short-term memory assessed by DST and CVLT-II short-delay or long-delay free-recalls. Conclusions: Only CVLT-II, but not MMSE, DST or TMT-B, demonstrated cognitive retesting practice effects in the younger and older adults. Cognitive testing at 3-week intervals in cognitively normal older and younger subjects revealed divergent cardiorespiratory responses to MMSE, DST, and TMT-B cognitive testing, particularly HR, which increased only in younger adults and to a lesser extent during retesting despite the absence of practice effects.

3.
Exp Biol Med (Maywood) ; 248(23): 2464-2472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057956

RESUMO

Postural hypotension abruptly lowers cerebral perfusion, producing unsteadiness which worsens with aging. This study addressed the hypothesis that maintenance of cerebral perfusion weakens in the elderly due to less effective cerebrovascular autoregulation and systemic cardiovascular responses to hypotension. In healthy elderly (n = 13, 68 ± 1 years) and young (n = 13, 26 ± 1 years) adults, systemic hypotension was induced by rapid deflation of bilateral thigh cuffs after 3-min suprasystolic occlusion, while heart rate (HR), mean arterial pressure (MAP), and blood flow velocity of the middle cerebral artery (VMCA) were recorded. VMCA/MAP indexed cerebrovascular conductance (CVC). Durations and rates of recovery of MAP and VMCA from their respective postdeflation nadirs were compared between the groups. Thigh-cuff deflation elicited similar hypotension and cerebral hypoperfusion in the elderly and young adults. However, the time elapsed (TΔ) from cuff deflation to the nadirs of MAP and VMCA, and the time for full recovery (TR) from nadirs to baselines were significantly prolonged in the elderly subjects. The response rates of HR (ΔHR, i.e. cardiac factor), MAP (ΔMAP, i.e. vasomotor factor), and CVC following cuff deflation were significantly slower in the elderly. Collectively, the response rates of the cardiac, vasomotor, and CVC factors largely explained TRVMCA. However, the TRVMCA/ΔMAP slope (-3.0 ± 0.9) was steeper (P = 0.046) than the TRVMCA/ΔHR slope (-1.1 ± 0.4). The TRVMCA/ΔCVC slope (-2.4 ± 0.6) was greater (P = 0.072) than the TRVMCA/ΔHR slope, but did not differ from the TRVMCA/ΔMAP slope (P = 0.52). Both cerebrovascular autoregulatory and systemic mechanisms contributed to cerebral perfusion recovery during systemic hypotension, and the vasomotor factor was predominant over the cardiac factor. Recovery from cerebral hypoperfusion was slower in the elderly adults because of the age-diminished rates of the CVC response and cardiovascular reflex regulation. Systemic vasoconstriction predominated over increased HR for restoring cerebral perfusion after abrupt onset of systemic hypotension.


Assuntos
Circulação Cerebrovascular , Hipotensão , Adulto Jovem , Humanos , Idoso , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular/fisiologia , Velocidade do Fluxo Sanguíneo , Frequência Cardíaca , Artéria Cerebral Média
4.
J Physiol ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860950

RESUMO

Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.

5.
Exp Biol Med (Maywood) ; 248(11): 991-1000, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092743

RESUMO

The impact of habitual physical activity on vagal-cardiac function and baroreflex sensitivity in elderly women is poorly characterized. This study compared vagal-cardiac modulation and carotid baroreflex (CBR) function in eight physically active (67.6 ± 1.9 years; peak O2 uptake 29.1 ± 2.5 mL/min/kg) versus eight sedentary (67.3 ± 1.8 years; peak O2 uptake 18.6 ± 0.9 mL/min/kg) elderly women. Heart rate (HR) variabilities and maximal changes of HR and mean arterial pressure (MAP) elicited by 5-s pressure pulses between +40 and -80 mmHg applied to the carotid sinus were measured at rest and during carotid baroreceptor unloading effected by -15 mmHg lower-body negative pressure (LBNP). HR variability was greater in active than sedentary women in both low (0.998 ± 0.286 versus 0.255 ± 0.063 bpm2; P = 0.036) and high (0.895 ± 0.301 versus 0.156 ± 0.045 bpm2; P = 0.044) frequency domains. CBR-HR gains (bpm/mmHg) were greater (fitness factor P < 0.001) in active versus sedentary women at rest (-0.146 ± 0.014 versus -0.088 ± 0.011) and during LBNP (-0.105 ± 0.014 versus -0.065 ± 0.008). CBR-MAP gains (mmHg/mmHg) tended to be greater (fitness factor P = 0.077) in active versus sedentary women at rest (-0.132 ± 0.013 versus -0.110 ± 0.011) and during LBNP (-0.129 ± 0.015 versus -0.113 ± 0.013). However, LBNP did not potentiate CBR-MAP gains in either sedentary or active women (LBNP factor P = 0.94), and it depressed CBR-HR gains in both groups (LBNP factor P = 0.003). CBR-HR gains in the sedentary women did not differ (sex factor P = 0.65) from gains reported in age-matched sedentary men, although CBR-MAP gains tended to be greater (sex factor P = 0.109) in the men. Thus, tonic vagal modulation indicated by HR variability and dynamic vagal responses assessed by CBR-HR gain were augmented in physically active women. Enhanced vagal-cardiac function may protect against senescence-associated cardiac electrical and hemodynamic instability in elderly women.


Assuntos
Barorreflexo , Exercício Físico , Masculino , Humanos , Feminino , Idoso , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Exercício Físico/fisiologia , Coração/fisiologia , Artérias Carótidas , Frequência Cardíaca
6.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675214

RESUMO

High-altitude illnesses (HAIs) result from acute exposure to high altitude/hypoxia. Numerous molecular mechanisms affect appropriate acclimatization to hypobaric and/or normobaric hypoxia and curtail the development of HAIs. The understanding of these mechanisms is essential to optimize hypoxic acclimatization for efficient prophylaxis and treatment of HAIs. This review aims to link outcomes of molecular mechanisms to either adverse effects of acute high-altitude/hypoxia exposure or the developing tolerance with acclimatization. After summarizing systemic physiological responses to acute high-altitude exposure, the associated acclimatization, and the epidemiology and pathophysiology of various HAIs, the article focuses on molecular adjustments and maladjustments during acute exposure and acclimatization to high altitude/hypoxia. Pivotal modifying mechanisms include molecular responses orchestrated by transcription factors, most notably hypoxia inducible factors, and reciprocal effects on mitochondrial functions and REDOX homeostasis. In addition, discussed are genetic factors and the resultant proteomic profiles determining these hypoxia-modifying mechanisms culminating in successful high-altitude acclimatization. Lastly, the article discusses practical considerations related to the molecular aspects of acclimatization and altitude training strategies.


Assuntos
Doença da Altitude , Altitude , Humanos , Proteômica , Doença da Altitude/genética , Hipóxia/genética , Aclimatação/fisiologia
7.
Exp Biol Med (Maywood) ; 248(5): 425-433, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36533574

RESUMO

Studies over the last decade have markedly broadened our understanding of store-operated Ca2+ channels (SOCs) and their roles in kidney diseases and podocyte dysfunction. Podocytes are terminally differentiated glomerular visceral epithelial cells which are tightly attached to the glomerular capillary basement membrane. Podocytes and their unique foot processes (pedicels) constitute the outer layer of the glomerular filtration membrane and the final barrier preventing filtration of albumin and other plasma proteins. Diabetic nephropathy and other renal diseases are associated with podocyte injury and proteinuria. Recent evidence demonstrates a pivotal role of store-operated Ca2+ entry (SOCE) in maintaining structural and functional integrity of podocytes. This article reviews the current knowledge of SOCE and its contributions to podocyte physiology. Recent studies of the contributions of SOC dysfunction to podocyte injury in both cell culture and animal models are discussed, including work in our laboratory. Several downstream signaling pathways mediating SOC function in podocytes also are examined. Understanding the pivotal roles of SOC in podocyte health and disease is essential, as SOCE-activated signaling pathways are potential treatment targets for podocyte injury-related kidney diseases.


Assuntos
Nefropatias Diabéticas , Podócitos , Animais , Podócitos/metabolismo , Transdução de Sinais , Modelos Animais , Nefropatias Diabéticas/metabolismo , Técnicas de Cultura de Células
8.
Front Physiol ; 13: 989635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388125

RESUMO

Background: Brief hypoxic exposures are increasingly applied as interventions for aging-related conditions. To optimize the therapeutic impact of hypoxia, knowledge of the sex-related differences in physiological responses to hypoxia is essential. This study compared hypoxia-induced hypoxemic responses in elderly men and women. Methods: Seven elderly men (70.3 ± 6.0 years old) and nine women (69.4 ± 5.5 years old) breathed 10% O2 for 5 min while arterial (SaO2; transcutaneous photoplethysmography) and cerebral tissue O2 saturation (ScO2; near-infrared spectroscopy), ventilatory frequency, tidal volume, minute-ventilation, and partial pressures of end-tidal O2 (PETO2) and CO2 (mass spectrometry) were continuously monitored. Cerebral tissue oxygen extraction fraction (OEF) equaled (SaO2-ScO2)/SaO2. Results: During 5 min hypoxia SaO2 fell from 97.0 ± 0.8% to 80.6 ± 4.6% in the men and from 96.3 ± 1.4% to 72.6 ± 4.0% in the women. The slope ΔSaO2/min was steeper in the women than the men (-4.71 ± 0.96 vs. -3.24 ± 0.76%/min; p = 0.005). Although SaO2 fell twice as sharply per unit decrease in PETO2 in the women than the men (-1.13 ± 0.11 vs. -0.54 ± 0.06%/mmHg; p = 0.003), minute-ventilation per unit hypoxemia increased less appreciably in the women (-0.092 ± 0.014 vs. -0.160 ± 0.021 L/min/%; p = 0.023). OEF fell with hypoxia duration in the women, but remained stable in the men. Conclusion: During 5 min hypoxic breathing, elderly women experience more intense hypoxemia and reduced chemoreflex sensitivity vs. their male counterparts, which may lower OEF stability in women despite augmented O2 dissociation from hemoglobin during hypoxia. These sex-related differences merit attention when implementing brief hypoxic exposures for therapeutic purposes.

10.
Antioxid Redox Signal ; 37(13-15): 887-912, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35102747

RESUMO

Significance: Oxygen is indispensable for aerobic life, but its utilization exposes cells and tissues to oxidative stress; thus, tight regulation of cellular, tissue, and systemic oxygen concentrations is crucial. Here, we review the current understanding of how the human organism (mal-)adapts to low (hypoxia) and high (hyperoxia) oxygen levels and how these adaptations may be harnessed as therapeutic or performance enhancing strategies at the systemic level. Recent Advances: Hyperbaric oxygen therapy is already a cornerstone of modern medicine, and the application of mild hypoxia, that is, hypoxia conditioning (HC), to strengthen the resilience of organs or the whole body to severe hypoxic insults is an important preparation for high-altitude sojourns or to protect the cardiovascular system from hypoxic/ischemic damage. Many other applications of adaptations to hypo- and/or hyperoxia are only just emerging. HC-sometimes in combination with hyperoxic interventions-is gaining traction for the treatment of chronic diseases, including numerous neurological disorders, and for performance enhancement. Critical Issues: The dose- and intensity-dependent effects of varying oxygen concentrations render hypoxia- and/or hyperoxia-based interventions potentially highly beneficial, yet hazardous, although the risks versus benefits are as yet ill-defined. Future Directions: The field of low and high oxygen conditioning is expanding rapidly, and novel applications are increasingly recognized, for example, the modulation of aging processes, mood disorders, or metabolic diseases. To advance hypoxia/hyperoxia conditioning to clinical applications, more research on the effects of the intensity, duration, and frequency of altered oxygen concentrations, as well as on individual vulnerabilities to such interventions, is paramount. Antioxid. Redox Signal. 37, 887-912.


Assuntos
Hiperóxia , Humanos , Hiperóxia/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
13.
Front Aging Neurosci ; 13: 674688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276338

RESUMO

In mouse models of Alzheimer's disease (AD), normobaric intermittent hypoxia training (IHT) can preserve neurobehavioral function when applied before deficits develop, but IHT's effectiveness after onset of amyloid-ß (Aß) accumulation is unclear. This study tested the hypothesis that IHT improves learning-memory behavior, diminishes Aß accumulation in cerebral cortex and hippocampus, and enhances cerebrocortical contents of the neuroprotective trophic factors erythropoietin and brain-derived neurotrophic factor (BDNF) in mice manifesting AD traits. Twelve-month-old female 3xTg-AD mice were assigned to untreated 3xTg-AD (n = 6), AD+IHT (n = 6), and AD+sham-IHT (n = 6) groups; 8 untreated wild-type (WT) mice also were studied. AD+IHT mice alternately breathed 10% O2 for 6 min and room air for 4 min, 10 cycles/day for 21 days; AD+sham-IHT mice breathed room air. Spatial learning-memory was assessed by Morris water maze. Cerebrocortical and hippocampal Aß40 and Aß42 contents were determined by ELISA, and cerebrocortical erythropoietin and BDNF were analyzed by immunoblotting and ELISA. The significance of time (12 vs. 12 months + 21 days) and treatment (IHT vs. sham-IHT) was evaluated by two-factor ANOVA. The change in swimming distance to find the water maze platform after 21 d IHT (-1.6 ± 1.8 m) differed from that after sham-IHT (+5.8 ± 2.6 m). Cerebrocortical and hippocampal Aß42 contents were greater in 3xTg-AD than WT mice, but neither time nor treatment significantly affected Aß40 or Aß42 contents in the 3xTg-AD mice. Cerebrocortical erythropoietin and BDNF contents increased appreciably after IHT as compared to untreated 3xTg-AD and AD+sham-IHT mice. In conclusion, moderate, normobaric IHT prevented spatial learning-memory decline and restored cerebrocortical erythropoietin and BDNF contents despite ongoing Aß accumulation in 3xTg-AD mice.

14.
Vasc Health Risk Manag ; 17: 317-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135590

RESUMO

Globally, about 400 million people reside at terrestrial altitudes above 1500 m, and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The interactions between the low barometric pressure and partial pressure of O2, climate, individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclimatization processes at high elevations are extremely complex. It is challenging to decipher the effects of these myriad factors on the cardiovascular health in high altitude residents, and even more so in those ascending to high altitudes with or without preexisting diseases. This review aims to interpret epidemiological observations in high-altitude populations; present and discuss cardiovascular responses to acute and subacute high-altitude exposure in general and more specifically in people with preexisting cardiovascular diseases; the relations between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric hypoxia.


Assuntos
Aclimatação , Altitude , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Aptidão Cardiorrespiratória , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/terapia , Tolerância ao Exercício , Nível de Saúde , Fatores de Risco de Doenças Cardíacas , Humanos , Prognóstico , Medição de Risco
15.
Ageing Res Rev ; 68: 101343, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862277

RESUMO

The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.


Assuntos
Hipóxia , Neuroproteção , Idoso , Humanos , Envelhecimento , Encéfalo
16.
Exp Biol Med (Maywood) ; 246(3): 305-316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249888

RESUMO

Research conducted over the last two decades has dramatically advanced the understanding of store-operated calcium channels (SOCC) and their impact on renal function. Kidneys contain many types of cells, including those specialized for glomerular filtration (fenestrated capillary endothelium, podocytes), water and solute transport (tubular epithelium), and regulation of glomerular filtration and renal blood flow (vascular smooth muscle cells, mesangial cells). The highly integrated function of these myriad cells effects renal control of blood pressure, extracellular fluid volume and osmolality, electrolyte balance, and acid-base homeostasis. Many of these cells are regulated by Ca2+ signaling. Recent evidence demonstrates that SOCCs are major Ca2+ entry portals in several renal cell types. SOCC is activated by depletion of Ca2+ stores in the sarco/endoplasmic reticulum, which communicates with plasma membrane SOCC via the Ca2+ sensor Stromal Interaction Molecule 1 (STIM1). Orai1 is recognized as the main pore-forming subunit of SOCC in the plasma membrane. Orai proteins alone can form highly Ca2+ selective SOCC channels. Also, members of the Transient Receptor Potential Canonical (TRPC) channel family are proposed to form heteromeric complexes with Orai1 subunits, forming SOCC with low Ca2+ selectivity. Recently, Ca2+ entry through SOCC, known as store-operated Ca2+ entry (SOCE), was identified in glomerular mesangial cells, tubular epithelium, and renovascular smooth muscle cells. The physiological and pathological relevance and the characterization of SOCC complexes in those cells are still unclear. In this review, we summarize the current knowledge of SOCC and their roles in renal glomerular, tubular and vascular cells, including studies from our laboratory, emphasizing SOCE regulation of fibrotic protein deposition. Understanding the diverse roles of SOCE in different renal cell types is essential, as SOCC and its signaling pathways are emerging targets for treatment of SOCE-related diseases.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Mesangiais/metabolismo , Proteína ORAI1/metabolismo , Canais de Cátion TRPC/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Túbulos Renais/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo
17.
Am J Physiol Renal Physiol ; 318(6): F1478-F1488, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32390515

RESUMO

Activation of immunological pathways and disturbances of extracellular matrix (ECM) dynamics are important contributors to the pathogenesis of chronic kidney diseases. Glomerular mesangial cells (MCs) are critical for homeostasis of glomerular ECM dynamics. Interleukin-6 (IL-6) can act as a pro/anti-inflammatory agent relative to cell types and conditions. This study investigated whether IL-6 influences ECM protein production by MCs and the regulatory pathways involved. Experiments were carried out in cultured human MCs (HMCs) and in mice. We found that overexpression of IL-6 and its receptor decreased the abundance of fibronectin and collagen type IV in MCs. ELISA and immunoblot analysis demonstrated that thapsigargin [an activator of store-operated Ca2+ entry (SOCE)], but not the endoplasmic reticulum stress inducer tunicamycin, significantly increased IL-6 content. This thapsigargin effect was abolished by GSK-7975A, a selective inhibitor of SOCE, and by silencing Orai1 (the channel protein mediating SOCE). Furthermore, inhibition of NF-κB pharmacologically and genetically significantly reduced SOCE-induced IL-6 production. Thapsigargin also stimulated nuclear translocation of the p65 subunit of NF-κB. Moreover, MCs overexpressing IL-6 and its receptor in HMCs increased the content of the glucagon-like peptide-1 receptor (GLP-1R), and IL-6 inhibition of fibronectin was attenuated by the GLP-1R antagonist exendin 9-39. In agreement with the HMC data, specific knockdown of Orai1 in MCs using the targeted nanoparticle delivery system in mice significantly reduced glomerular GLP-1R levels. Taken together, our results suggest a novel SOCE/NF-κB/IL-6/GLP-1R signaling pathway that inhibits ECM protein production by MCs.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Interleucina-6/metabolismo , Células Mesangiais/metabolismo , Receptores de Interleucina-6/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Receptores de Interleucina-6/genética , Transdução de Sinais
18.
Am J Alzheimers Dis Other Demen ; 35: 1533317519896725, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31902230

RESUMO

Although intermittent hypoxia training (IHT) has proven effective against various clinical disorders, its impact on mild cognitive impairment (MCI) is unknown. This pilot study examined IHT's safety and therapeutic efficacy in elderly patients with amnestic MCI (aMCI). Seven patients with aMCI (age 69 ± 3 years) alternately breathed 10% O2 and room-air, each 5 minutes, for 8 cycles/session, 3 sessions/wk for 8 weeks. The patients' resting arterial pressures fell by 5 to 7 mm Hg (P < .05) and cerebral tissue oxygenation increased (P < .05) following IHT. Intermittent hypoxia training enhanced hypoxemia-induced cerebral vasodilation (P < .05) and improved mini-mental state examination and digit span scores from 25.7 ± 0.4 to 27.7 ± 0.6 (P = .038) and from 24.7 ± 1.2 to 26.1 ± 1.3 (P = .047), respectively. California verbal learning test score tended to increase (P = .102), but trail making test-B and controlled oral word association test scores were unchanged. Adaptation to moderate IHT may enhance cerebral oxygenation and hypoxia-induced cerebrovasodilation while improving short-term memory and attention in elderly patients with aMCI.


Assuntos
Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/terapia , Testes Neuropsicológicos/estatística & dados numéricos , Idoso , Amnésia/fisiopatologia , Feminino , Humanos , Hipóxia , Masculino , Projetos Piloto
19.
Respir Physiol Neurobiol ; 271: 103306, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557538

RESUMO

BACKGROUND: The impact of aging on cerebrovascular function and tissue oxygenation during graded hypoxemia is incompletely known. This study compared the age effect on these variables during cyclic hypoxemia-reoxygenation. METHODS: Hypoxia-induced changes in arterial (SaO2) and cerebral tissue (ScO2) O2 saturation, middle cerebral arterial flow velocity (VMCA), estimated cerebral vascular conductance (CVC), heart rate (HR) and ventilation were compared between 12 elderly (71 ± 2 yr, 7 women) and 13 young (24 ± 3 yr, 5 women) adults during the first and fifth 5-min exposures to 10% O2. RESULTS: Although pre-hypoxia SaO2 did not differ between the groups, ScO2 was lower (P < 0.05) in the elderly (68.4 ± 1.2%) than young (73.8 ± 0.9%) adults, commensurate with a lower resting VMCA (P < 0.05). SaO2 fell less sharply (P < 0.05) in the elderly subjects during the first and fifth hypoxia exposures. Moreover, the responses of ScO2, VMCA, CVC, HR and breathing frequency to hypoxia were attenuated in the elderly subjects. Systolic and diastolic arterial pressures fell by 2-6 mmHg during hypoxia in both young and elderly. Thus, hypoxemia developed more gradually in elderly than young adults during normobaric hypoxia, concordant with a reduced metabolic demand in the elderly. CONCLUSIONS: The elderly adults safely tolerated cyclic, moderate hypoxemia which lowered SaO2 by 20-25%, despite dampening of cerebrovascular and cardiac responses to hypoxemia.


Assuntos
Envelhecimento/fisiologia , Pressão Sanguínea/fisiologia , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Ventilação Pulmonar/fisiologia , Adulto , Idoso , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Hipóxia/diagnóstico por imagem , Masculino , Ultrassonografia Doppler Transcraniana/métodos , Adulto Jovem
20.
Med Eng Phys ; 67: 66-72, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30922842

RESUMO

Shunts are commonly employed to treat hydrocephalus, a severe central nervous disease caused by the buildup of cerebrospinal fluid in the brain. These shunts divert excessive cerebrospinal fluid from brain ventricles to other body cavities, thereby relieving the symptoms. However, these shunts are highly prone to failure due to obstruction from cellular debris, leading to cerebrospinal fluid accumulation in the brain and exacerbation of neurological symptoms. Therefore, there is a clinical need for a reliable, non-invasive method of monitoring shunt performance. Recently, a simple inline flow sensor was reported for monitoring ventriculoperitoneal shunting of cerebrospinal fluid in hydrocephalus treatment. The present work aimed to evaluate performance of the device in an animal model of hydrocephalus. Sensor-equipped shunt tubes were placed in anesthetized, juvenile swine. The flows reported by the sensor were compared with gravimetric flow measurements. Robust correlations (r ≈ 0.87-0.96) between the gravimetric and sensor-reported flows were obtained in 4 of the 6 experiments. The mean slope of the linear relationship of the gravimetrically determined vs. sensor flow rates was 0.98 ± 0.09 in the 6 experiments, indicating the sensor accurately reported shunt flows up to 35 ml/h. The sensor responded immediately to abrupt flow changes following cerebroventricular fluid injections. Minor hardware problems were identified and corrected. These experiments provide practical guidance for future preclinical testing of the device.


Assuntos
Hidrodinâmica , Derivação Ventriculoperitoneal/instrumentação , Animais , Calibragem , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/cirurgia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA