Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
JBMR Plus ; 5(9): e10530, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532615

RESUMO

Osteogenesis imperfecta (OI), is a genetic disorder of bone fragility caused by mutations in collagen I or proteins involved in collagen processing. Previous studies in mice and human OI bones have shown that excessive activation of TGF-ß signaling plays an important role in dominant and recessive OI disease progression. Inhibition of TGF-ß signaling with a murine pan-specific TGF-ß neutralizing antibody (1D11) was shown to significantly increase trabecular bone volume and long bone strength in mouse models of OI. To investigate the frequency of dosing and dose options of TGF-ß neutralizing antibody therapy, we assessed the effect of 1D11 on disease progression in a dominant OI mouse model (col1a2 gene mutation at G610C). In comparison with OI mice treated with a control antibody, we attempted to define mechanistic effects of 1D11 measured via µCT, biomechanical, dynamic histomorphometry, and serum biomarkers of bone turnover. In addition, osteoblast and osteoclast numbers in histological bone sections were assessed to better understand the mechanism of action of the 1D11 antibody in OI. Here we show that 1D11 treatment resulted in both dose and frequency dependency, increases in trabecular bone volume fraction and ultimate force in lumbar bone, and ultimate force, bending strength, yield force, and yield strength in the femur (p ≤ 0.05). Suppression of serum biomarkers of osteoblast differentiation, osteocalcin, resorption, CTx-1, and bone formation were observed after 1D11 treatment of OI mice. Immunohistochemical analysis showed dose and frequency dependent decreases in runt-related transcription factor, and increase in alkaline phosphatase in lumbar bone sections. In addition, a significant decrease in TRACP and the number of osteoclasts to bone surface area was observed with 1D11 treatment. Our results show that inhibition of the TGF-ß pathway corrects the high-turnover aspects of bone disease and improves biomechanical properties of OI mice. These results highlight the potential for a novel treatment for osteogenesis imperfecta. © 2021 Sanofi-Genzyme. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Oncoimmunology ; 10(1): 1881268, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33796402

RESUMO

Immune checkpoint blockade elicits durable anti-cancer responses in the clinic, however a large proportion of patients do not benefit from treatment. Several mechanisms of innate and acquired resistance to checkpoint blockade have been defined and include mutations of MHC I and IFNγ signaling pathways. However, such mutations occur in a low frequency of patients and additional mechanisms have yet to be elucidated. In an effort to better understand acquired resistance to checkpoint blockade, we generated a mouse tumor model exhibiting in vivo resistance to anti-PD-1 antibody treatment. MC38 tumors acquired resistance to PD-1 blockade following serial in vivo passaging. Lack of sensitivity to PD-1 blockade was not attributed to dysregulation of PD-L1 or ß2M expression, as both were expressed at similar levels in parental and resistant cells. Similarly, IFNγ signaling and antigen processing and presentation pathways were functional in both parental and resistant cell lines. Unbiased gene expression analysis was used to further characterize potential resistance mechanisms. RNA-sequencing revealed substantial differences in global gene expression, with tumors resistant to anti-PD-1 displaying a marked reduction in expression of immune-related genes relative to parental MC38 tumors. Indeed, resistant tumors exhibited reduced immune infiltration across multiple cell types, including T and NK cells. Pathway analysis revealed activation of TGFß and Notch signaling in anti-PD-1 resistant tumors, and activation of these pathways was associated with poorer survival in human cancer patients. While pharmacological inhibition of TGFß and Notch in combination with PD-1 blockade decelerated tumor growth, a local mRNA-based immunotherapy potently induced regression of resistant tumors, resulting in complete tumor remission, and resensitized tumors to treatment with anti-PD-1. Overall, this study describes a novel anti-PD-1 resistant mouse tumor model and underscores the role of two well-defined signaling pathways in response to immune checkpoint blockade. Furthermore, our data highlights the potential of intratumoral mRNA therapy in overcoming acquired resistance to PD-1 blockade.


Assuntos
Imunoterapia , Neoplasias , Animais , Apresentação de Antígeno , Modelos Animais de Doenças , Humanos , Camundongos , RNA Mensageiro/genética
3.
Sci Rep ; 11(1): 7254, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790381

RESUMO

Phenylketonuria (PKU) is an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism. It is caused by a partial or complete deficiency of the enzyme phenylalanine hydroxylase (PAH), which is necessary for conversion of Phe to tyrosine (Tyr). This metabolic error results in buildup of Phe and reduction of Tyr concentration in blood and in the brain, leading to neurological disease and intellectual deficits. Patients exhibit retarded body growth, hypopigmentation, hypocholesterolemia and low levels of neurotransmitters. Here we report first attempt at creating a homozygous Pah knock-out (KO) (Hom) mouse model, which was developed in the C57BL/6 J strain using CRISPR/Cas9 where codon 7 (GAG) in Pah gene was changed to a stop codon TAG. We investigated 2 to 6-month-old, male, Hom mice using comprehensive behavioral and biochemical assays, MRI and histopathology. Age and sex-matched heterozygous Pah-KO (Het) mice were used as control mice, as they exhibit enough PAH enzyme activity to provide Phe and Tyr levels comparable to the wild-type mice. Overall, our findings demonstrate that 6-month-old, male Hom mice completely lack PAH enzyme, exhibit significantly higher blood and brain Phe levels, lower levels of brain Tyr and neurotransmitters along with lower myelin content and have significant behavioral deficit. These mice exhibit phenotypes that closely resemble PKU patients such as retarded body growth, cutaneous hypopigmentation, and hypocholesterolemia when compared to the age- and sex-matched Het mice. Altogether, biochemical, behavioral, and pathologic features of this novel mouse model suggest that it can be used as a reliable translational tool for PKU preclinical research and drug development.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Animais , Masculino , Camundongos , Camundongos Knockout
4.
J Bone Miner Res ; 29(5): 1141-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24166835

RESUMO

Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-ß1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-ß1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-ß antibody (1D11) was used to explore TGF-ß's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/ß-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-ß may contribute to the pathogenesis of high-turnover disease partially through inhibition of ß-catenin signaling.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Osteoclastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , Animais , Anticorpos Neutralizantes/farmacologia , Antígenos de Diferenciação/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico por imagem , Distúrbio Mineral e Ósseo na Doença Renal Crônica/genética , Distúrbio Mineral e Ósseo na Doença Renal Crônica/patologia , Colágeno Tipo I , Modelos Animais de Doenças , Masculino , Camundongos , Osteocalcina/metabolismo , Osteoclastos/patologia , Peptídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Microtomografia por Raio-X
5.
Clin Trials ; 10(6): 935-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23867223

RESUMO

BACKGROUND: Subjects who enroll in multiple studies have been found to use deception at times to overcome restrictive screening criteria. Deception undermines subject safety as well as study integrity. Little is known about the extent to which experienced research subjects use deception and what type of information is concealed, withheld, or distorted. PURPOSE: This study examined the prevalence of deception and types of deception used by subjects enrolling in multiple studies. METHODS: Self-report of deceptive behavior used to gain entry into clinical trials was measured among a sample of 100 subjects who had participated in at least two studies in the past year. RESULTS: Three quarters of subjects reported concealing some health information from researchers in their lifetime to avoid exclusion from enrollment in a study. Health problems were concealed by 32% of the sample, use of prescribed medications by 28%, and recreational drug use by 20% of the sample. One quarter of subjects reported exaggerating symptoms in order to qualify for a study and 14% reported pretending to have a health condition in order to qualify. LIMITATIONS: Although this study finds high rates of lifetime deceptive behavior, the frequency and context of this behavior is unknown. Understanding the context and frequency of deception will inform the extent to which it jeopardizes study integrity and safety. CONCLUSION: The use of deception threatens both participant safety and the integrity of research findings. Deception may be fueled in part by undue inducements, overly restrictive criteria for entry, and increased demand for healthy controls. Screening measures designed to detect deception among study subjects would aid in both protecting subjects and ensuring the quality of research findings.


Assuntos
Enganação , Seleção de Pacientes , Sujeitos da Pesquisa , Ensaios Clínicos como Assunto , Feminino , Humanos , Renda , Masculino , Pessoa de Meia-Idade , Motivação , Autorrelato , Fatores Sexuais , Desemprego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA