Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Sci Adv ; 10(43): eado5042, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39454003

RESUMO

Precise and efficient delivery of macromolecules into cells enhances basic biology research and therapeutic applications in cell therapies, drug delivery, and personalized medicine. While pulsed electric field electroporation effectively permeabilizes cell membranes to deliver payloads without the need for toxic chemical or viral transduction agents, conventional bulk electroporation devices face major challenges with cell viability and heterogeneity due to variations in fields generated across cells and electrochemistry at the electrode-electrolyte interface. Here, we introduce the use of microfabricated electrodes based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), which substantially increases cell viability and transfection efficiency. As a proof of concept, we demonstrate the enhanced delivery of Cas9 protein, guide RNA, and plasmid DNA into cell lines and primary cells. This use of PEDOT:PSS enables rapid modification of difficult-to-transfect cell types to accelerate their study and use as therapeutic platforms.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Eletrodos , Eletroporação , Polímeros , Poliestirenos , Eletroporação/métodos , Poliestirenos/química , Humanos , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Animais , Sobrevivência Celular , Transfecção/métodos , Camundongos
2.
MRS Bull ; 49(10): 1045-1058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39397879

RESUMO

This article is based on the MRS Mid-Career Researcher Award "for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine" presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed.

3.
Nat Electron ; 7(7): 586-597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086869

RESUMO

The functional and sensory augmentation of living structures, such as human skin and plant epidermis, with electronics can be used to create platforms for health management and environmental monitoring. Ideally, such bioelectronic interfaces should not obstruct the inherent sensations and physiological changes of their hosts. The full life cycle of the interfaces should also be designed to minimize their environmental footprint. Here we report imperceptible augmentation of living systems through in situ tethering of organic bioelectronic fibres. Using an orbital spinning technique, substrate-free and open fibre networks-which are based on poly (3,4-ethylenedioxythiophene):polystyrene sulfonate-can be tethered to biological surfaces, including fingertips, chick embryos and plants. We use customizable fibre networks to create on-skin electrodes that can record electrocardiogram and electromyography signals, skin-gated organic electrochemical transistors and augmented touch and plant interfaces. We also show that the fibres can be used to couple prefabricated microelectronics and electronic textiles, and that the fibres can be repaired, upgraded and recycled.

4.
AIP Adv ; 14(8): 085109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130131

RESUMO

Scalable electronic brain implants with long-term stability and low biological perturbation are crucial technologies for high-quality brain-machine interfaces that can seamlessly access delicate and hard-to-reach regions of the brain. Here, we created "NeuroRoots," a biomimetic multi-channel implant with similar dimensions (7 µm wide and 1.5 µm thick), mechanical compliance, and spatial distribution as axons in the brain. Unlike planar shank implants, these devices consist of a number of individual electrode "roots," each tendril independent from the other. A simple microscale delivery approach based on commercially available apparatus minimally perturbs existing neural architectures during surgery. NeuroRoots enables high density single unit recording from the cerebellum in vitro and in vivo. NeuroRoots also reliably recorded action potentials in various brain regions for at least 7 weeks during behavioral experiments in freely-moving rats, without adjustment of electrode position. This minimally invasive axon-like implant design is an important step toward improving the integration and stability of brain-machine interfacing.

5.
Nat Commun ; 15(1): 7523, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214981

RESUMO

Implantable devices interfacing with peripheral nerves exhibit limited longevity and resolution. Poor nerve-electrode interface quality, invasive surgical placement and development of foreign body reaction combine to limit research and clinical application of these devices. Here, we develop cuff implants with a conformable design that achieve high-quality and stable interfacing with nerves in chronic implantation scenarios. When implanted in sensorimotor nerves of the arm in awake rats for 21 days, the devices record nerve action potentials with fascicle-specific resolution and extract from these the conduction velocity and direction of propagation. The cuffs exhibit high biocompatibility, producing lower levels of fibrotic scarring than clinically equivalent PDMS silicone cuffs. In addition to recording nerve activity, the devices are able to modulate nerve activity at sub-nerve resolution to produce a wide range of paw movements. When used in a partial nerve ligation rodent model, the cuffs identify and characterise changes in nerve C fibre activity associated with the development of neuropathic pain in freely-moving animals. The developed implantable devices represent a platform enabling new forms of fine nerve signal sensing and modulation, with applications in physiology research and closed-loop therapeutics.


Assuntos
Potenciais de Ação , Nervos Periféricos , Animais , Nervos Periféricos/fisiologia , Ratos , Potenciais de Ação/fisiologia , Masculino , Eletrodos Implantados , Neuralgia/fisiopatologia , Neuralgia/terapia , Ratos Sprague-Dawley , Próteses e Implantes , Condução Nervosa/fisiologia
6.
Bioelectron Med ; 10(1): 19, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164790

RESUMO

Bioelectronic Medicine (BEM), which uses implantable electronic medical devices to interface with electrically active tissues, aspires to revolutionize the way we understand and fight disease. By leveraging knowledge from microelectronics, materials science, information technology, neuroscience and medicine, BEM promises to offer novel solutions that address unmet clinical needs and change the concept of therapeutics. This perspective communicates our vision for the future of BEM and presents the necessary steps that need to be taken and the challenges that need to be faced before this new technology can flourish.

7.
J Mater Chem B ; 12(39): 9894-9904, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39189156

RESUMO

Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.


Assuntos
Hipocampo , Hipocampo/efeitos dos fármacos , Animais , Ratos , Método de Monte Carlo , Humanos , Luz
8.
ACS Appl Mater Interfaces ; 16(28): 36727-36734, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38972069

RESUMO

Understanding the dynamics of ion migration and volume change is crucial to studying the functionality and long-term stability of soft polymeric materials operating at liquid interfaces, but the subsurface characterization of swelling processes in these systems remains elusive. In this work, we address the issue using modulated electrochemical atomic force microscopy as a depth-sensitive technique to study electroswelling effects in the high-performance actuator material polypyrrole doped with dodecylbenzenesulfonate (Ppy:DBS). We perform multidimensional measurements combining local electroswelling and electrochemical impedance spectroscopies on microstructured Ppy:DBS actuators. We interpret charge accumulation in the polymeric matrix with a quantitative model, giving access to both the spatiotemporal dynamics of ion migration and the distribution of electroswelling in the electroactive polymer layer. The findings demonstrate a nonuniform distribution of the effective ionic volume in the Ppy:DBS layer depending on the film morphology and redox state. Our findings indicate that the highly efficient actuation performance of Ppy:DBS is caused by rearrangements of the polymer microstructure induced by charge accumulation in the soft polymeric matrix, increasing the effective ionic volume in the bulk of the electroactive film for up to two times the value measured in free water.

9.
Nat Commun ; 15(1): 6290, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060241

RESUMO

Electrocorticography is an established neural interfacing technique wherein an array of electrodes enables large-area recording from the cortical surface. Electrocorticography is commonly used for seizure mapping however the implantation of large-area electrocorticography arrays is a highly invasive procedure, requiring a craniotomy larger than the implant area to place the device. In this work, flexible thin-film electrode arrays are combined with concepts from soft robotics, to realize a large-area electrocorticography device that can change shape via integrated fluidic actuators. We show that the 32-electrode device can be packaged using origami-inspired folding into a compressed state and implanted through a small burr-hole craniotomy, then expanded on the surface of the brain for large-area cortical coverage. The implantation, expansion, and recording functionality of the device is confirmed in-vitro and in porcine in-vivo models. The integration of shape actuation into neural implants provides a clinically viable pathway to realize large-area neural interfaces via minimally invasive surgical techniques.


Assuntos
Eletrocorticografia , Eletrodos Implantados , Eletrocorticografia/instrumentação , Eletrocorticografia/métodos , Animais , Suínos , Craniotomia/métodos , Craniotomia/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Robótica/instrumentação , Robótica/métodos , Encéfalo/fisiologia
10.
MRS Commun ; 14(3): 261-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966401

RESUMO

Microelectrode arrays (MEAs) have applications in drug discovery, toxicology, and basic research. They measure the electrophysiological response of tissue cultures to quantify changes upon exposure to biochemical stimuli. Unfortunately, manual addition of chemicals introduces significant noise in the recordings. Here, we report a simple-to-fabricate fluidic system that addresses this issue. We show that cell cultures can be successfully established in the fluidic compartment under continuous flow conditions and that the addition of chemicals introduces minimal noise in the recordings. This dynamic cell culture system represents an improvement over traditional tissue culture wells used in MEAs, facilitating electrophysiology measurements.

11.
Sci Adv ; 10(29): eadn5142, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018406

RESUMO

Recent progress in the development of synthetic polymer networks has enabled the next generation of hydrogel-based machines and devices. The ability to mimic the mechanical and electrical properties of human tissue gives great potential toward the fields of bioelectronics and soft robotics. However, fabricating hydrogel devices that display high ionic conductivity while maintaining high stretchability and softness remains unmet. Here, we synthesize supramolecular poly(ionic) networks, which display high stretchability (>1500%), compressibility (>90%), and rapid self-recovery (<30 s), while achieving ionic conductivities of up to 0.1 S cm -1. Dynamic cross-links give rise to inter-layer adhesion and a stable interface is formed on account of ultrahigh binding affinities (>1013 M-2). Superior adherence between layers enabled the fabrication of an intrinsically stretchable hydrogel power source, paving the way for the next generation of multi-layer tissue mimetic devices.

12.
Sci Adv ; 10(26): eado9576, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924408

RESUMO

Lip language recognition urgently needs wearable and easy-to-use interfaces for interference-free and high-fidelity lip-reading acquisition and to develop accompanying data-efficient decoder-modeling methods. Existing solutions suffer from unreliable lip reading, are data hungry, and exhibit poor generalization. Here, we propose a wearable lip language decoding technology that enables interference-free and high-fidelity acquisition of lip movements and data-efficient recognition of fluent lip language based on wearable motion capture and continuous lip speech movement reconstruction. The method allows us to artificially generate any wanted continuous speech datasets from a very limited corpus of word samples from users. By using these artificial datasets to train the decoder, we achieve an average accuracy of 92.0% across individuals (n = 7) for actual continuous and fluent lip speech recognition for 93 English sentences, even observing no training burn on users because all training datasets are artificially generated. Our method greatly minimizes users' training/learning load and presents a data-efficient and easy-to-use paradigm for lip language recognition.


Assuntos
Fala , Dispositivos Eletrônicos Vestíveis , Humanos , Idioma , Lábio/fisiologia , Movimento , Masculino , Feminino , Adulto , Leitura Labial , Captura de Movimento
13.
Biomaterials ; 310: 122624, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38805956

RESUMO

The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns -flat, pyramidal, striped and wavy- to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine interfaces.


Assuntos
Eletrodos , Aprendizado de Máquina , Poliestirenos , Impressão Tridimensional , Têxteis , Humanos , Poliestirenos/química , Condutividade Elétrica , Dispositivos Eletrônicos Vestíveis , Compostos Bicíclicos Heterocíclicos com Pontes/química , Géis/química , Polímeros/química , Polietilenoglicóis/química , Eletromiografia/métodos , Materiais Biocompatíveis/química
14.
Sci Adv ; 10(19): eadl1230, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718109

RESUMO

The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Animais , Medula Espinal/fisiologia , Ratos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Estimulação Elétrica/métodos , Eletrodos Implantados
15.
Nat Mater ; 23(7): 969-976, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38671159

RESUMO

Electrode arrays that interface with peripheral nerves are used in the diagnosis and treatment of neurological disorders; however, they require complex placement surgeries that carry a high risk of nerve injury. Here we leverage recent advances in soft robotic actuators and flexible electronics to develop highly conformable nerve cuffs that combine electrochemically driven conducting-polymer-based soft actuators with low-impedance microelectrodes. Driven with applied voltages as small as a few hundreds of millivolts, these cuffs allow active grasping or wrapping around delicate nerves. We validate this technology using in vivo rat models, showing that the cuffs form and maintain a self-closing and reliable bioelectronic interface with the sciatic nerve of rats without the use of surgical sutures or glues. This seamless integration of soft electrochemical actuators with neurotechnology offers a path towards minimally invasive intraoperative monitoring of nerve activity and high-quality bioelectronic interfaces.


Assuntos
Microeletrodos , Nervos Periféricos , Animais , Ratos , Nervos Periféricos/fisiologia , Nervo Isquiático/fisiologia , Ratos Sprague-Dawley , Técnicas Eletroquímicas/métodos
16.
Proc Natl Acad Sci U S A ; 121(4): e2320855121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232285
17.
Adv Sci (Weinh) ; 11(27): e2306424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38251224

RESUMO

In this work, a new method of multi-material printing in one-go using a commercially available 3D printer is presented. The approach is simple and versatile, allowing the manufacturing of multi-material layered or multi-material printing in the same layer. To the best of the knowledge, it is the first time that 3D printed Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) micro-patterns combining different materials are reported, overcoming mechanical stability issues. Moreover, the conducting ink is engineered to obtain stable in-time materials while retaining sub-100 µm resolution. Micro-structured bio-shaped protuberances are designed and 3D printed as electrodes for electrophysiology. Moreover, these microstructures are combined with polymerizable deep eutectic solvents (polyDES) as functional additives, gaining adhesion and ionic conductivity. As a result of the novel electrodes, low skin impedance values showed suitable performance for electromyography recording on the forearm. Finally, this concluded that the use of polyDES conferred stability over time, allowing the usability of the electrode 90 days after fabrication without losing its performance. All in all, this demonstrated a very easy-to-make procedure that allows printing PEDOT:PSS on soft, hard, and/or flexible functional substrates, opening up a new paradigm in the manufacturing of conducting multi-functional materials for the field of bioelectronics and wearables.

18.
Adv Mater ; 36(19): e2312735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290128

RESUMO

Devices interfacing with biological tissues can provide valuable insights into function, disease, and metabolism through electrical and mechanical signals. However, certain neuromuscular tissues, like those in the gastrointestinal tract, undergo significant strains of up to 40%. Conventional inextensible devices cannot capture the dynamic responses in these tissues. This study introduces electrodes made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and polydimethylsiloxane (PDMS) that enable simultaneous monitoring of electrical and mechanical responses of gut tissue. The soft PDMS layers conform to tissue surfaces during gastrointestinal movement. Dopants, including Capstone FS-30 and polyethylene glycol, are explored to enhance the conductivity, electrical sensitivity to strain, and stability of the PEDOT:PSS. The devices are fabricated using shadow masks and solution-processing techniques, providing a faster and simpler process than traditional clean-room-based lithography. Tested on ex vivo mouse colon and human stomach, the device recorded voltage changes of up to 300 µV during contraction and distension consistent with muscle activity, while simultaneously recording resistance changes of up to 150% due to mechanical strain. These devices detect and respond to chemical stimulants and blockers, and can induce contractions through electrical stimulation. They hold great potential for studying and treating complex disorders like irritable bowel syndrome and gastroparesis.


Assuntos
Dimetilpolisiloxanos , Poliestirenos , Animais , Camundongos , Poliestirenos/química , Humanos , Dimetilpolisiloxanos/química , Contração Muscular/fisiologia , Eletrodos , Trato Gastrointestinal/fisiologia , Estômago/fisiologia , Colo/fisiologia , Condutividade Elétrica , Polímeros/química , Fenômenos Eletrofisiológicos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Tiofenos/química , Tiofenos/farmacologia
19.
ACS Mater Lett ; 5(12): 3340-3346, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38075386

RESUMO

Underwater recording remains a critical challenge in bioelectronics because traditional flexible electrodes can not fulfill essential requirements such as stability and steady conductivity in aquatic environments. Herein, we show the use of elastic gels made of hydrophobic natural eutectic solvents as water-resistant electrodes. These eutectogels are designed with tailorable mechanical properties via one-step photopolymerization of acrylic monomers in different eutectic mixtures composed of fatty acids and menthol. The low viscosity of the eutectics turns the formulations into suitable inks for 3D printing, allowing fast manufacturing of complex objects. Furthermore, the hydrophobic nature of the building blocks endows the eutectogels with excellent stability and low water uptake. The obtained flexible eutectogel electrodes can record real-time electromyography (EMG) signals with low interference in the air and underwater.

20.
Biomaterials ; 303: 122393, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977006

RESUMO

Spinal cord injuries have devastating consequences for humans, as mammalian neurons of the central nervous system (CNS) cannot regenerate. In the peripheral nervous system (PNS), however, neurons may regenerate to restore lost function following injury. While mammalian CNS tissue softens after injury, how PNS tissue mechanics changes in response to mechanical trauma is currently poorly understood. Here we characterised mechanical rat nerve tissue properties before and after in vivo crush and transection injuries using atomic force microscopy-based indentation measurements. Unlike CNS tissue, PNS tissue significantly stiffened after both types of tissue damage. This nerve tissue stiffening strongly correlated with an increase in collagen I levels. Schwann cells, which crucially support PNS regeneration, became more motile and proliferative on stiffer substrates in vitro, suggesting that changes in tissue stiffness may play a key role in facilitating or impeding nervous system regeneration.


Assuntos
Tecido Nervoso , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Sistema Nervoso Central , Células de Schwann/fisiologia , Neurônios , Regeneração Nervosa/fisiologia , Axônios/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA