Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chembiochem ; 22(3): 565-570, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32975902

RESUMO

The 55-residue OCRE domains of the splicing factors RBM5 and RBM10 contain 15 tyrosines in compact, globular folds. At 25 °C, all 15 tyrosines show symmetric 1 H NMR spectra, with averaged signals for the pairs of δ- and ϵ-ring hydrogens. At 4 °C, two tyrosines were identified as showing 1 H NMR line-broadening due to lowered frequency of the ring-flipping. For the other 13 tyrosine rings, it was not evident, from the 1 H NMR data alone, whether they were either all flipping at high frequencies, or whether slowed flipping went undetected due to small chemical-shift differences between pairs of exchanging ring hydrogen atoms. Here, we integrate 1 H NMR spectroscopy and molecular dynamics (MD) simulations to determine the tyrosine ring-flip frequencies. In the RBM10-OCRE domain, we found that, for 11 of the 15 tyrosines, these frequencies are in the range 2.0×106 to 1.3×108  s-1 , and we established an upper limit of <1.0×106  s-1 for the remaining four residues. The experimental data and the MD simulation are mutually supportive, and their combined use extends the analysis of aromatic ring-flip events beyond the limitations of routine 1 H NMR line-shape analysis into the nanosecond frequency range.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Simulação de Dinâmica Molecular , Fatores de Processamento de RNA/química , Proteínas de Ligação a RNA/química , Proteínas Supressoras de Tumor/química , Tirosina/química , Motivos de Aminoácidos , Humanos , Espectroscopia de Prótons por Ressonância Magnética
2.
Biochemistry ; 56(30): 3885-3888, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661131

RESUMO

We identify a previously unresolved, unrecognized, and highly stable conformation of the protein kinase A (PKA) regulatory subunit RIα. This conformation, which we term the "Flipback" structure, bridges conflicting characteristics in crystallographic structures and solution experiments of the PKA RIα heterotetramer. Our simulations reveal a hinge residue, G235, in the B/C helix that is conserved through all isoforms of RI. Brownian dynamics simulations suggest that the Flipback conformation plays a role in cAMP association to the A domain of the R subunit.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , AMP Cíclico/química , Modelos Moleculares , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Bovinos , Sequência Conservada , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Bases de Dados de Proteínas , Ativação Enzimática , Estabilidade Enzimática , Glicina/química , Holoenzimas , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Biophys J ; 112(12): 2469-2474, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636905

RESUMO

With the drive toward high throughput molecular dynamics (MD) simulations involving ever-greater numbers of simulation replicates run for longer, biologically relevant timescales (microseconds), the need for improved computational methods that facilitate fully automated MD workflows gains more importance. Here we report the development of an automated workflow tool to perform AMBER GPU MD simulations. Our workflow tool capitalizes on the capabilities of the Kepler platform to deliver a flexible, intuitive, and user-friendly environment and the AMBER GPU code for a robust and high-performance simulation engine. Additionally, the workflow tool reduces user input time by automating repetitive processes and facilitates access to GPU clusters, whose high-performance processing power makes simulations of large numerical scale possible. The presented workflow tool facilitates the management and deployment of large sets of MD simulations on heterogeneous computing resources. The workflow tool also performs systematic analysis on the simulation outputs and enhances simulation reproducibility, execution scalability, and MD method development including benchmarking and validation.


Assuntos
Simulação de Dinâmica Molecular , Software , Gráficos por Computador , Processamento Eletrônico de Dados , Humanos , Internet , Análise de Componente Principal , Proteína Supressora de Tumor p53/metabolismo , Fluxo de Trabalho
4.
Biochemistry ; 56(10): 1536-1545, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28221775

RESUMO

Close-range electrostatic interactions that form salt bridges are key components of protein stability. Here we investigate the role of these charged interactions in modulating the allosteric activation of protein kinase A (PKA) via computational and experimental mutational studies of a conserved basic patch located in the regulatory subunit's B/C helix. Molecular dynamics simulations evidenced the presence of an extended network of fluctuating salt bridges spanning the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the flexibility and conformational free energy landscape induced by the separate mutations of Arg239 and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through in vitro fluorescence polarization assays. These observations suggest a mechanical aspect to the allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the transition between the two protein functional states. The simulations also provide a molecular explanation for the essential role of Arg241 in allowing cooperative activation, by evidencing the existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the role of salt bridges not only in protein stability but also in promoting conformational transition and function.


Assuntos
Arginina/química , Ácido Aspártico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , AMP Cíclico/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Arginina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Clonagem Molecular , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sais/química , Alinhamento de Sequência , Eletricidade Estática , Termodinâmica
5.
Biophys J ; 111(8): 1631-1640, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760351

RESUMO

Proteins commonly sample a number of conformational states to carry out their biological function, often requiring transitions from the ground state to higher-energy states. Characterizing the mechanisms that guide these transitions at the atomic level promises to impact our understanding of functional protein dynamics and energy landscapes. The leucine-99-to-alanine (L99A) mutant of T4 lysozyme is a model system that has an experimentally well characterized excited sparsely populated state as well as a ground state. Despite the exhaustive study of L99A protein dynamics, the conformational changes that permit transitioning to the experimentally detected excited state (∼3%, ΔG ∼2 kcal/mol) remain unclear. Here, we describe the transitions from the ground state to this sparsely populated excited state of L99A as observed through a single molecular dynamics (MD) trajectory on the Anton supercomputer. Aside from detailing the ground-to-excited-state transition, the trajectory samples multiple metastates and an intermediate state en route to the excited state. Dynamic motions between these states enable cavity surface openings large enough to admit benzene on timescales congruent with known rates for benzene binding. Thus, these fluctuations between rare protein states provide an atomic description of the concerted motions that illuminate potential path(s) for ligand binding. These results reveal, to our knowledge, a new level of complexity in the dynamics of buried cavities and their role in creating mobile defects that affect protein dynamics and ligand binding.


Assuntos
Substituição de Aminoácidos , Bacteriófago T4/enzimologia , Movimento , Muramidase/genética , Muramidase/metabolismo , Simulação de Dinâmica Molecular , Muramidase/química , Mutação , Conformação Proteica
6.
Structure ; 24(8): 1248-1256, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27396830

RESUMO

Cullin-RING E3 ligases (CRLs) are elongated and bowed protein complexes that transfer ubiquitin over 60 Å to proteins targeted for proteasome degradation. One such CRL contains the ankyrin repeat and SOCS box protein 9 (ASB9), which binds to and partially inhibits creatine kinase (CK). While current models for the ASB9-CK complex contain some known interface residues, the overall structure and precise interface of the ASB9-CK complex remains unknown. Through an integrative modeling approach, we report a third-generation model that reveals precisely the interface interactions and also fits the shape of the ASB9-CK complex as determined by small-angle X-ray scattering. We constructed an atomic model for the entire CK-targeting CRL to uncover dominant modes of motion that could permit ubiquitin transfer. Remarkably, only the correctly docked CK-containing E3 ligase and not incorrectly docked structures permitted close approach of ubiquitin to the CK substrate.


Assuntos
Creatina Quinase/química , Proteínas Supressoras da Sinalização de Citocina/química , Ubiquitina/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Creatina Quinase/genética , Creatina Quinase/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Termodinâmica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Difração de Raios X
7.
Chem Rev ; 116(11): 6370-90, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074285

RESUMO

Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/metabolismo , Regulação Alostérica , Sítio Alostérico , Descoberta de Drogas , Cadeias de Markov , Simulação de Dinâmica Molecular , Método de Monte Carlo , Preparações Farmacêuticas/química , Ligação Proteica , Proteínas/química , Termodinâmica
8.
Front Physiol ; 6: 250, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441670

RESUMO

The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM), subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA) activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic, and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.

9.
Nat Commun ; 6: 7588, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26145448

RESUMO

Ligand-induced protein allostery plays a central role in modulating cellular signalling pathways. Here using the conserved cyclic nucleotide-binding domain of protein kinase A's (PKA) regulatory subunit as a prototype signalling unit, we combine long-timescale, all-atom molecular dynamics simulations with Markov state models to elucidate the conformational ensembles of PKA's cyclic nucleotide-binding domain A for the cAMP-free (apo) and cAMP-bound states. We find that both systems exhibit shallow free-energy landscapes that link functional states through multiple transition pathways. This observation suggests conformational selection as the general mechanism of allostery in this canonical signalling domain. Further, we expose the propagation of the allosteric signal through key structural motifs in the cyclic nucleotide-binding domain and explore the role of kinetics in its function. Our approach integrates disparate lines of experimental data into one cohesive framework to understand structure, dynamics and function in complex biological systems.


Assuntos
Regulação Alostérica/fisiologia , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/fisiologia , Modelos Químicos , Microscopia , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica
10.
J Chem Theory Comput ; 10(7): 2648-2657, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25473382

RESUMO

Owing to recent developments in computational algorithms and architectures, it is now computationally tractable to explore biologically relevant, equilibrium dynamics of realistically-sized functional proteins using all-atom molecular dynamics simulations. Molecular dynamics simulations coupled with Markov state models is a nascent but rapidly growing technology that is enabling robust exploration of equilibrium dynamics. The objective of this work is to explore the challenges of coupling molecular dynamics simulations and Markov state models in the study of functional proteins. Using recent studies as a framework, we explore progress in sampling, model building, model selection, and coarse-grained analysis of models. Our goal is to highlight some of the current challenges in applying Markov state models to realistically-sized proteins and spur discussion on advances in the field.

11.
Procedia Comput Sci ; 29: 1745-1755, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29399238

RESUMO

We describe the development of automated workflows that support computed-aided drug discovery (CADD) and molecular dynamics (MD) simulations and are included as part of the National Biomedical Computational Resource (NBCR). The main workflow components include: file-management tasks, ligand force field parameterization, receptor-ligand molecular dynamics (MD) simulations, job submission and monitoring on relevant high-performance computing (HPC) resources, receptor structural clustering, virtual screening (VS), and statistical analyses of the VS results. The workflows aim to standardize simulation and analysis and promote best practices within the molecular simulation and CADD communities. Each component is developed as a stand-alone workflow, which allows easy integration into larger frameworks built to suit user needs, while remaining intuitive and easy to extend.

12.
J Biomed Biotechnol ; 2012: 106746, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22500074

RESUMO

This study investigated the cytotoxicity of 55 species of plants. Each plant was rated as medicinal, or nonmedicinal based on the existing literature. About 79% of the medicinal plants showed some cytotoxicity, while 75% of the nonmedicinal plants showed bioactivity. It appears that Asteraceae, Labiatae, Pinaceae, and Chenopodiaceae were particularly active against human cervical cancer cells. Based on the literature, only three of the 55 plants have been significantly investigated for cytotoxicity. It is clear that there is much toxicological work yet to be done with both medicinal and nonmedicinal plants.


Assuntos
Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Feminino , Células HeLa , Humanos , Fitoterapia , Plantas/química , Neoplasias do Colo do Útero
13.
J Chem Inf Model ; 51(7): 1648-55, 2011 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-21696204

RESUMO

Virtual screening of small molecule databases against macromolecular targets was used to identify binding ligands and predict their lowest energy bound conformation (i.e., pose). AutoDock4-generated poses were rescored using mean-field pathway decoupling free energy of binding calculations and evaluated if these calculations improved virtual screening discrimination between bound and nonbound ligands. Two small molecule databases were used to evaluate the effectiveness of the rescoring algorithm in correctly identifying binders of L99A T4 lysozyme. Self-dock calculations of a database containing compounds with known binding free energies and cocrystal structures largely reproduced experimental measurements, although the mean difference between calculated and experimental binding free energies increased as the predicted bound poses diverged from the experimental poses. In addition, free energy rescoring was more accurate than AutoDock4 scores in discriminating between known binders and nonbinders, suggesting free energy rescoring could be a useful approach to reduce false positive predictions in virtual screening experiments.


Assuntos
Muramidase/química , Bibliotecas de Moléculas Pequenas , Termodinâmica , Sítios de Ligação , Simulação por Computador , Descoberta de Drogas , Ligantes
14.
J Mol Graph Model ; 29(1): 46-53, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20483643

RESUMO

The alphavirus nsP2 protease is essential for correct processing of the alphavirus nonstructural polyprotein (nsP1234) and replication of the viral genome. We have combined molecular dynamics simulations with our structural studies to reveal features of the nsP2 protease catalytic site and S1'-S4 subsites that regulate the specificity of the protease. The catalytic mechanism of the nsP2 protease appears similar to the papain-like cysteine proteases, with the conserved catalytic dyad forming a thiolate-imidazolium ion pair in the nsP2-activated state. Substrate binding likely stabilizes this ion pair. Analysis of bimolecular complexes of Venezuelan equine encephalitis virus (VEEV) nsP2 protease with each of the nsP1234 cleavage sites identified protease residues His(510), Ser(511), His(546) and Lys(706) as critical for cleavage site recognition. Homology modelling and molecular dynamics simulations of diverse alphaviruses and their cognate cleavage site sequences revealed general features of substrate recognition that operate across alphavirus strains as well as strain specific covariance between binding site and cleavage site residues. For instance, compensatory changes occurred in the P3 and S3 subsite residues to maintain energetically favourable complementary binding surfaces. These results help explain how alphavirus nsP2 proteases recognize different cleavage sites within the nonstructural polyprotein and discriminate between closely related cleavage targets.


Assuntos
Alphavirus/enzimologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Biocatálise , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Antiviral Res ; 82(3): 110-4, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19428601

RESUMO

Dengue virus belongs to the family Flaviviridae and is a major emerging pathogen for which the development of vaccines and antiviral therapy has seen little success. The NS3 viral protease is a potential target for antiviral drugs since it is required for virus replication. The goal of this study was to identify novel dengue virus (type 2; DEN2V) protease inhibitors for eventual development as effective anti-flaviviral drugs. The EUDOC docking program was used to computationally screen a small-molecule library for compounds that dock into the P1 pocket and the catalytic site of the DEN2V NS3 protease domain apo-structure [Murthy, K., Clum, S., Padmanabhan, R., 1999. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J. Biol. Chem. 274, 5573-5580] and the Bowman-Birk inhibitor-bound structure [Murthy, K., Judge, K., DeLucas, L., Padmanabhan, R., 2000. Crystal structure of dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J. Mol. Biol. 301, 759-767]. The top 20 computer-identified hits that demonstrated the most favorable scoring "energies" were selected for in vitro assessment of protease inhibition. Preliminary protease activity assays demonstrated that more than half of the tested compounds were soluble and exhibited in vitro inhibition of the DEN2V protease. Two of these compounds also inhibited viral replication in cell culture experiments, and thus are promising compounds for further development.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Drogas Desenhadas/farmacologia , Inibidores de Proteases/farmacologia , Serina Endopeptidases/metabolismo , Antivirais/química , Drogas Desenhadas/química , Humanos , Modelos Moleculares , Inibidores de Proteases/química , Serina Endopeptidases/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA