Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0093023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792000

RESUMO

IMPORTANCE: Mouse models of viral infection play an especially large role in virology. In 1960, a mouse virus, lactate dehydrogenase-elevating virus (LDV), was discovered and found to have the peculiar ability to evade clearance by the immune system, enabling it to persistently infect an individual mouse for its entire lifespan without causing overt disease. However, researchers were unable to grow LDV in culture, ultimately resulting in the demise of this system as a model of failed immunity. We solve this problem by identifying the cell-surface molecule CD163 as the critical missing component in cell-culture systems, enabling the growth of LDV in immortalized cell lines for the first time. This advance creates abundant opportunities for further characterizing LDV in order to study both failed immunity and the family of viruses to which LDV belongs, Arteriviridae (aka, arteriviruses).


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Técnicas de Cultura de Células , Expressão Ectópica do Gene , Vírus Elevador do Lactato Desidrogenase , Receptores de Superfície Celular , Animais , Camundongos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular/virologia , Vírus Elevador do Lactato Desidrogenase/genética , Vírus Elevador do Lactato Desidrogenase/crescimento & desenvolvimento , Vírus Elevador do Lactato Desidrogenase/imunologia , Vírus Elevador do Lactato Desidrogenase/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Tempo
2.
PLoS One ; 16(8): e0255738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370741

RESUMO

Adenomatous Polyposis Coli (APC) is lost in approximately 70% of sporadic breast cancers, with an inclination towards triple negative breast cancer (TNBC). TNBC is treated with traditional chemotherapy, such as paclitaxel (PTX); however, tumors often develop drug resistance. We previously created APC knockdown cells (APC shRNA1) using the human TNBC cells, MDA-MB-157, and showed that APC loss induces PTX resistance. To understand the mechanisms behind APC-mediated PTX response, we performed cell cycle analysis and analyzed cell cycle related proteins. Cell cycle analysis indicated increased G2/M population in both PTX-treated APC shRNA1 and parental cells, suggesting that APC expression does not alter PTX-induced G2/M arrest. We further studied the subcellular localization of the G2/M transition proteins, cyclin B1 and CDK1. The APC shRNA1 cells had increased CDK1, which was preferentially localized to the cytoplasm, and increased baseline CDK6. RNA-sequencing was performed to gain a global understanding of changes downstream of APC loss and identified a broad mis-regulation of cell cycle-related genes in APC shRNA1 cells. Our studies are the first to show an interaction between APC and taxane response in breast cancer. The implications include designing combination therapy to re-sensitize APC-mutant breast cancers to taxanes using the specific cell cycle alterations.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Proteína Quinase CDC2/genética , Metaplasia/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina B1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Metaplasia/genética , Metaplasia/patologia , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
Cancers (Basel) ; 12(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182737

RESUMO

The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA