Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 6: 487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386771

RESUMO

C-encapsulated highly pure PtxCoy alloy nanoparticles have been synthesized by an innovative one-step in-situ laser pyrolysis. The obtained X-ray diffraction pattern and transmission electron microscopy images correspond to PtxCoy alloy nanoparticles with average diameters of 2.4 nm and well-established crystalline structure. The synthesized PtxCoy/C catalyst containing 1.5 wt% of PtxCoy nanoparticles can achieve complete CO conversion in the temperature range 125-175°C working at weight hourly space velocities (WHSV) of 30 L h-1g-1. This study shows the first example of bimetallic nanoalloys synthesized by laser pyrolysis and paves the way for a wide variety of potential applications and metal combinations.

2.
ACS Appl Mater Interfaces ; 9(47): 41529-41536, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-28975781

RESUMO

The present work shows an efficient strategy to assemble two types of functional nanoparticles onto mesoporous MCM-41 silica nanospheres with a high degree of spatial precision. In a first stage, magnetite nanoparticles are synthesized with a size larger than the support pores and grafted covalently through a peptide-like bonding onto their external surface. This endowed the silica nanoparticles with a strong superparamagnetic response, while preserving the highly ordered interior space for the encapsulation of other functional guest species. Second, we report the finely controlled pumping of preformed Pt nanoparticles (1.5 nm) within the channels of the magnetic MCM-41 nanospheres to confer an additional catalytic functionality to the multiassembled nanoplatform. The penetration depth of the metallic nanoparticles can be explained as a result of the interplay between the particle-wall electrostatic attraction and the repulsive forces between neighboring Pt nanoparticles. A detailed transmission electron microscopy and a 3D high-resolution high-angle annular dark-field detector electron tomography study were carried out to characterize the material and to explain the assembly mechanism. Finally, the performance of these multifunctional nanohybrids as magnetically recoverable catalysts has been evaluated in the selective hydrogenation of p-nitrophenol, a well-known pollutant and intermediate in multiple industrial processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA