Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 415: 113522, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391797

RESUMO

BACKGROUND: Motor cortex stimulation (MCS) is proper as a non-pharmacological therapy for patients with chronic and neuropathic pain (NP). AIMS: This work aims to investigate if the MCS in the primary motor cortex (M1) produces analgesia and how the MCS could interfere in the MCS-induced analgesia. Also, to elucidate if the persistent activation of N-methyl-d-aspartic acid receptor (NMDAr) in the periaqueductal grey matter (PAG) can contribute to central sensitisation of the NP. METHODS: Male Wistar rats were submitted to the von Frey test to evaluate the mechanical allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve. The MCS was performed with low-frequency (20 µA, 100 Hz) currents during 15 s by a deep brain stimulation (DBS) device. Moreover, the effect of M1-treatment with an NMDAr agonist (at 2, 4, and 8 nmol) was investigated in CCI rats. The PAG dorsomedial column (dmPAG) was pretreated with the NMDAr antagonist LY 235959 (at 8 nmol), followed by MCS. RESULTS: The MCS decreased the mechanical allodynia in rats with chronic NP. The M1-treatment with an NMDA agonist at 2 and 8 nmol reduced the mechanical allodynia in CCI rats. In addition, dmPAG-pretreatment with LY 235959 at 8 nmol attenuated the mechanical allodynia evoked by MCS. CONCLUSION: The M1 cortex glutamatergic system is involved in the modulation of chronic NP. The analgesic effect of MCS may depend on glutamate signaling recruitting NMDAr located on PAG neurons in rodents with chronic NP.


Assuntos
Dor Crônica/terapia , Estimulação Encefálica Profunda , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Córtex Motor/efeitos dos fármacos , Neuralgia/terapia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Analgesia , Animais , Modelos Animais de Doenças , Isoquinolinas/farmacologia , Masculino , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA