Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(19): 28090-28104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530520

RESUMO

The glass manufacturing industry produces hazardous effluent that is difficult to manage and causes numerous environmental problems when disposed of in the open. In this study, an attempt was made to study the phytoremediation feasibility of water lettuce (Pistia stratiotes L.), a free-floating aquatic macrophyte, for the removal of six heavy metals from glass industry effluent (GIE) at varying concentrations (0, 25, 50, 75, and 100%). After a 40-day experiment, the results showed that 25% GIE dilution showed maximum removal of heavy metals i.e., Cu (91.74%), Cr (95.29%), Fe (86.47%), Mn (92.95%), Pb (87.10%), and Zn (91.34%), respectively. The bioaccumulation, translocation, and Pearson correlation studies showed that the amount of heavy metals absorbed by vegetative parts of P. stratiotes was significantly correlated with concentrations. The highest biomass production, chlorophyll content, relative growth rate, and biomass productivity were also noted in the 25% GIE treatment. Moreover, the multiple linear regression models developed for the prediction of heavy metal uptake by P. stratiotes also showed good performance in determining the impact of GIE properties. The models showed a high coefficient of determination (R2 > 0.99), low mean average normalizing error (MANE = 0.01), and high model efficiency (ME > 0.99) supporting the robustness of the developed equations. This study outlined an efficient method for the biological treatment of GIE using P. stratiotes to reduce risks associated with its unsafe disposal.


Assuntos
Biodegradação Ambiental , Metais Pesados , Poluentes Químicos da Água , Araceae/metabolismo , Vidro , Resíduos Industriais
2.
Heliyon ; 9(11): e21184, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964857

RESUMO

Air pollution poses a significant threat to human health, ecosystems, and the livelihood of tribal communities. This study focuses on understanding the impact of air pollution on the primary food plant som (Persea bombycina Kost.) of the endemic Muga silkworm (Antheraea assamensis) and its implications for muga silk production. The study was conducted at two sites in northeastern India, one free from atmospheric pollutants (FAP) and the other affected by pollution from an oil refinery (PAS). Various atmospheric pollutants, including particulate matter, hydrocarbons, and heavy metals, were found to be higher at the PAS site. The study investigated biochemical parameters like ascorbic acid, relative water content, total chlorophyll, and extractable pH in the leaves of P. bombycina to determine its air pollution tolerance index (APTI). Results showed that the ascorbic acid content in the leaves increased significantly at the PAS site (p < 0.05), indicating the plant's adaptation to air pollution stress. Similarly, the APTI values were higher during summer compared to winter, suggesting better tolerance during the former season. Positive correlations were found between APTI and ascorbic acid content (p < 0.05), emphasizing the role of ascorbic acid as an antioxidant in mitigating the effects of air pollution. The study highlights the importance of understanding the tolerance levels of P. bombycina to develop protective measures for sustaining Muga silk production in the face of rapid industrialization and increasing pollution. This research can aid policymakers in balancing economic growth with environmental conservation and protecting traditional practices of tribal communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA