Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557108

RESUMO

Mixed conducting cobaltites PrBaCo2-xFexO6-δ (x = 0-0.6) with a double perovskite structure are promising materials for ceramic semi-permeable membranes for oxygen separation and purification due to their fast oxygen exchange and diffusion capability. Here, we report the results of the detailed study of an interplay between the defect chemistry, oxygen nonstoichiometry and oxygen transport in these materials as a function of iron doping. We show that doping leads to a systematic variation of both the thermodynamics of defect formation reactions and oxygen transport properties. Thus, iron doping can be used to optimize the performance of mixed conducting oxygen-permeable double perovskite membrane materials.

2.
Materials (Basel) ; 15(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36363267

RESUMO

Hybrid organic-inorganic perovskite halides, and, in particular, their mixed halide solid solutions, belong to a broad class of materials which appear promising for a wide range of potential applications in various optoelectronic devices. However, these materials are notorious for their stability issues, including their sensitivity to atmospheric oxygen and moisture as well as phase separation under illumination. The thermodynamic properties, such as enthalpy, entropy, and Gibbs free energy of mixing, of perovskite halide solid solutions are strongly required to shed some light on their stability. Herein, we report the results of an experimental thermochemical study of the CH3NH3Pb(Cl1-xBrx)3 mixed halides by solution calorimetry. Combining these results with molecular dynamics simulation revealed the complex and irregular shape of the compositional dependence of the mixing enthalpy to be the result of a complex interplay between the local lattice strain, hydrogen bonds, and energetics of these solid solutions.

3.
Membranes (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36676817

RESUMO

Differential scanning calorimetry studies of the complex oxide YBaCo2O6-δ (YBC), combined with the literature data, allowed outlining the phase behavior of YBC depending on the oxygen content and temperature between 298 K and 773 K. The oxygen nonstoichiometry of single-phase tetragonal YBC was measured at different temperatures and oxygen partial pressures by both thermogravimetric and flow reactor methods. The defect structure of YBC was analyzed. As a result, the thermodynamic functions (∆Hi○, ∆Si○) of the defect reactions in YBC were determined. Experimental data on the oxygen content and those calculated based on the theoretical model were shown to be in good agreement. Standard enthalpies of formation at 298.15 K (∆Hf○) were obtained for YBC depending on its oxygen content using solution calorimetry. It was found that ∆Hf○ = f(6-δ) function is linear in the range of (6-δ) from 5.018 to 5.406 and that its slope is close to the value of the enthalpy of the quasichemical reaction describing oxygen exchange between the oxide and ambient atmosphere, which confirms the reliability of the suggested defect structure model.

4.
Inorg Chem ; 60(23): 18141-18153, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34784207

RESUMO

The oxygen nonstoichiometry, δ, and oxidation enthalpy, ΔHox, of double perovskites RBaCo2O6-δ (R = Sm or Eu) were simultaneously measured depending on the temperature and oxygen partial pressure, pO2. Theoretical equations for ΔHox(T, δ) and pO2(T, δ) were derived from the defect structure model based on the oxygen exchange and cobalt disproportionation reactions. These equations were fitted independently to each of the experimental ΔHox(T, δ) and pO2(T, δ) data sets. The resulting enthalpies of defect reactions were found to be almost the same irrespective of the calculation method. In other words, the models, describing satisfactorily the data, can be used to calculate both compositional dependences and redox thermodynamics of RBaCo2O6-δ (R = Sm or Eu). In addition, from the previously published data and the data presented here, trends were determined in the defect reaction thermodynamics of RBaCo2O6-δ (R = La, Pr, Nd, Sm, Eu, Gd, or Y). Drop calorimetric measurements were performed in air to obtain enthalpy increments for RBaCo2O6-δ (R = Sm or Eu) with variable oxygen content because the samples lost oxygen upon being heated in the calorimetric cell. As-obtained data were used to calculate the functional dependences of enthalpy increments of EuBaCo2O5.56 and SmBaCo2O5.6 with a constant oxygen content. In addition, as an example of practical application-oriented calculations for solar energy conversion and oxygen storage, the performances at equilibrium of RBaCo2O6-δ (R = Pr, Sm, Eu, or Gd) were evaluated and compared to those of SrFeO3-δ as a reference material.

5.
Chemistry ; 26(55): 12549-12552, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32757334

RESUMO

Mechanochemical synthesis of CsPbI3 , as a model system for ABX3 halides, was studied. Water was shown to strongly promote the kinetics of formation of CsPbI3 from the CsI+PbI2 mixture through increased mobility of the constituting ionic species. Since many binary and ternary halides are hygroscopic, it was concluded that the presence of small, uncontrollable and unintentional additions of water should often occur in both precursor mixtures and synthesized complex halides boosting the kinetics of formation of many, if not all, ternary organic-inorganic hybrid halides such as, for example, MAPbX3 (X=Cl, Br, I). In addition, trace amounts of water should influence the transport characteristics of complex halides. Thus, the presence of water explains, at least partially, the huge scatter in both the reported mechanochemical reaction times necessary for obtaining single-phase APbX3 perovskite halides and the activation energies of ionic diffusion in APbX3 .

6.
Chem Commun (Camb) ; 56(7): 1030-1033, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31859690

RESUMO

High temperature electrocatalysts based on double perovskite cobaltites that are typically employed in proton ceramic fuel cells and electrolyzers are exploited here for room temperature water oxidation. The double perovskites are assessed by the RctCdl product and we show that their intrinsic catalytic activities exceed that of IrO2.

7.
Membranes (Basel) ; 9(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540323

RESUMO

BaZr0.9Y0.1O3-δ (BZY10), a promising proton conducting material, exhibits p-type conduction under oxidative conditions. Holes in BZY10 are of the small polaron type. However, there is no clear understanding at which places in the lattice they are localized. The main objectives of this work were, therefore, to discuss the nature of electronic defects in BZY10 on the basis of the combined measurements of the thermo-EMF and conductivity. Total electrical conductivity and Seebeck coefficient of BZY10 were simultaneously studied depending on partial pressures of oxygen (pO2), water (pH2O) and temperature (T). The model equation for total conductivity and Seebeck coefficient derived on the basis of the proposed defect chemical approach was successfully fitted to the experimental data. Transference numbers of all the charge carriers in BZY10 were calculated. The heat of transport of oxide ions was found to be about one half the activation energy of their mobility, while that of protons was almost equal to the activation energy of their mobility. The results of the Seebeck coefficient modeling indicate that cation impurities, rather than oxygen sites, should be considered as a place of hole localization.

9.
Inorg Chem ; 57(19): 12409-12416, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216058

RESUMO

The disordered La0.5Ba0.5CoO3-δ ↔ ordered LaBaCo2O6-δ transition was studied in detail using several complementary in situ (X-ray diffraction, thermogravimetry, and coulometric titration) and ex situ (transmission electron microscopy) techniques. This transition was found to proceed through the formation of complex domain textured intermediate products. They were shown to have strong affinity to oxygen and exhibit its fast absorption from ambient atmosphere (oxygen partial pressure ( pO2) 0.21 atm) at a temperature as low as 70 °C. The thermodynamic stability limits of the cubic and double perovskites were determined by coulometric titration. The stability diagram of the LaBaCo2O6-δ - La0.5Ba0.5CoO3-δ system was plotted as a result. Oxygen nonstoichiometry of the thermodynamically stable cubic perovskite La0.5Ba0.5CoO3-δ was measured as a function of pO2 in the temperature range between 1000 and 1100 °C using a coulometric titration technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA