Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(2): 144-154, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37921091

RESUMO

Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail. Collagen denaturation has been confirmed using DSC and FTIR analysis. The comparative study of collagen and gelatin nonwoven materials (NWM) revealed only minor differences in their biocompatibility with skin fibroblasts and keratinocytes in vitro. In long-term subcutaneous implantation study, the inflammation was less evident on collagen than on gelatin NWM. Remarkably, the pronounced calcification was revealed in the collagen NWM only. The results obtained can be useful in terms of improving the electrospinning technology of collagen from aqueous solutions, as well as emphasize the importance of long-term study to ensure proper implementation of the material, taking into account the ability of collagen to provoke calcification.


Assuntos
Nanofibras , Alicerces Teciduais , Gelatina/farmacologia , Engenharia Tecidual/métodos , Colágeno/farmacologia
2.
J Funct Biomater ; 13(4)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36278661

RESUMO

A significant drawback of the rigid synthetic vascular prostheses used in the clinic is the mechanical mismatch between the implant and the prosthetic vessel. When placing prostheses with radial elasticity, in which this deficiency is compensated, the integration of the graft occurs more favorably, so that signs of cell differentiation appear in the prosthesis capsule, which contributes to the restoration of vascular tone and the possibility of vasomotor reactions. Aortic prostheses fabricated by electrospinning from a blend of copolymers of vinylidene fluoride with hexafluoropropylene (VDF/HFP) had a biomechanical behavior comparable to the native aorta. In the present study, to ensure mechanical stability in the conditions of a living organism, the fabricated blood vessel prostheses (BVP) were cross-linked with γ-radiation. An optimal absorbed dose of 0.3 MGy was determined. The obtained samples were implanted into the infrarenal aorta of laboratory animals-Landrace pigs. Histological studies have shown that the connective capsule that forms around the prosthesis has signs of high tissue organization. This is evidenced by the cells of the fibroblast series located in layers oriented along and across the prosthesis, similar to the orientation of cells in a biological arterial vessel.

3.
Cell Prolif ; 52(3): e12598, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900363

RESUMO

OBJECTIVES: The conversion of tissue engineering into a routine clinical tool cannot be achieved without a deep understanding of the interaction between cells and scaffolds during the process of tissue formation in an artificial environment. Here, we have investigated the cultivation conditions and structural features of the biodegradable non-woven material in order to obtain a well-differentiated human airway epithelium. MATERIALS AND METHODS: The bilayered scaffold was fabricated by electrospinning technology. The efficiency of the scaffold has been evaluated using MTT cell proliferation assay, histology, immunofluorescence and electron microscopy. RESULTS: With the use of a copolymer of chitosan-gelatin-poly-l-lactide, a bilayered non-woven scaffold was generated and characterized. The optimal structural parameters of both layers for cell proliferation and differentiation were determined. The basal airway epithelial cells differentiated into ciliary and goblet cells and formed pseudostratified epithelial layer on the surface of the scaffold. In addition, keratinocytes formed a skin equivalent when seeded on the same scaffold. A comparative analysis of growth and differentiation for both types of epithelium was performed. CONCLUSIONS: The structural parameters of nanofibres should be selected experimentally depending on polymer composition. The major challenges on the way to obtain the well-differentiated equivalent of respiratory epithelium on non-woven scaffold include the following: the balance between scaffold permeability and thickness, proper combination of synthetic and natural components, and culture conditions sufficient for co-culturing of airway epithelial cells and fibroblasts. For generation of skin equivalent, the lack of diffusion is not so critical as for pseudostratified airway epithelium.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia/citologia , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Quitosana/química , Técnicas de Cocultura , Células Epiteliais/citologia , Fibroblastos/citologia , Gelatina/química , Humanos , Queratinócitos/citologia , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/química , Alicerces Teciduais/química , Traqueia/crescimento & desenvolvimento , Traqueia/fisiologia
4.
J Biomed Mater Res A ; 107(2): 312-318, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29896910

RESUMO

For efficient manufacturing of fibrous collagen-based materials by electrospinning, the search on optimal rheological parameters is of the great importance. Rheological characteristics and denaturation of collagen in aqueous dispersions were studied as a function of shear rate and acetic acid concentration in the range of 3-9% w/w at temperature from 20 to 40°C. It was shown that an increase in temperature, acetic acid concentration of the collagen dispersion leads to a significant decrease in its viscosity. It was found that helical conformation of the collagen macromolecules is preserved up to 31°C. An increase in acetic acid concentration leads to a reduction of denaturation temperature. The complex viscosity of collagen dispersions exhibits a sharp drop, followed by a rapid growth of damping factor in the temperature range from 22 to 35°C. Both storage (G') and loss (G″) moduli increase with frequency and collagen concentration. It was revealed that optimal parameters for electrospinning of highly concentrated collagen dispersions can be achieved by adjusting of the concentration of acetic acid, temperature, and stirring speed. As a result, collagen nonwoven materials with diameter from 100 to 700 nm were obtained. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 312-318, 2019.


Assuntos
Colágeno Tipo I/química , Nanofibras/química , Animais , Bovinos , Colágeno Tipo I/ultraestrutura , Nanofibras/ultraestrutura , Conformação Proteica em alfa-Hélice , Desnaturação Proteica , Reologia , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA