Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37233524

RESUMO

Ultrafiltration (UF) has been proven effective in removing algae during seasonal algal blooms, but the algal cells and the metabolites can induce severe membrane fouling, which undermines the performance and stability of the UF. Ultraviolet-activated sulfite with iron (UV/Fe(II)/S(IV)) could enable an oxidation-reduction coupling circulation and exert synergistic effects of moderate oxidation and coagulation, which would be highly preferred in fouling control. For the first time, the UV/Fe(II)/S(IV) was systematically investigated as a pretreatment of UF for treating Microcystis aeruginosa-laden water. The results showed that the UV/Fe(II)/S(IV) pretreatment significantly improved the removal of organic matter and alleviated membrane fouling. Specifically, the organic matter removal increased by 32.1% and 66.6% with UV/Fe(II)/S(IV) pretreatment for UF of extracellular organic matter (EOM) solution and algae-laden water, respectively, while the final normalized flux increased by 12.0-29.0%, and reversible fouling was mitigated by 35.3-72.5%. The oxysulfur radicals generated in the UV/S(IV) degraded the organic matter and ruptured the algal cells, and the low-molecular-weight organic matter generated in the oxidation penetrated the UF and deteriorated the effluent. The over-oxidation did not happen in the UV/Fe(II)/S(IV) pretreatment, which may be attributed to the cyclic redox Fe(II)/Fe(III) coagulation triggered by the Fe(II). The UV-activated sulfate radicals in the UV/Fe(II)/S(IV) enabled satisfactory organic removal and fouling control without over-oxidation and effluent deterioration. The UV/Fe(II)/S(IV) promoted the aggregation of algal foulants and postponed the shift of the fouling mechanisms from standard pore blocking to cake filtration. The UV/Fe(II)/S(IV) pretreatment proved effective in enhancing the UF for algae-laden water treatment.

2.
Sci Total Environ ; 886: 163864, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142040

RESUMO

The surface reactivity of biochar derived from waste biomass has not been well understood due to its complex composition and heterogeneity. Therefore, this study synthesized a series of biochar-like hyper-crosslinked polymers (HCPs) with different amounts of phenolic hydroxyl groups on the surface as an indicative tool to investigate the roles of key surface properties of biochar on transforming pollutants being adsorbed. Characterization of HCPs suggested that electron donating capacity (EDC) of different HCPs was positively correlated with increasing amounts of phenol hydroxyl groups, whereas specific surface area, degree of aromatization and graphitization were negatively correlated. It was found that greater amounts of hydroxyl radicals were produced with increasing amounts of hydroxyl groups on the synthesized HCPs. Batch degradation experiments with trichlorophenols (TCPs) suggested that all HCPs could decompose TCP molecules upon contact. The degree of TCP degradation (~45 %) was highest for HCP made from benzene monomer with the lowest amounts of hydroxyl groups, which was likely driven by its greater specific surface area and reactive sites for TCP degradation. Conversely, the degree of TCP degradation (~25 %) by HCPs with the highest hydroxyl group abundance was the lowest, probably because the lower surface area of HCPs had limited TCP adsorption, which led to lower interaction between HCP surface and TCP molecules. The results concluded from the contact of HCPs and TCP suggested both EDC and adsorption capacity of biochar played critical roles in transforming organic pollutants.


Assuntos
Clorofenóis , Poluentes Ambientais , Biomassa , Polímeros , Carvão Vegetal/química , Fenóis , Adsorção
3.
Bioresour Technol ; 363: 127930, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261999

RESUMO

Anaerobic membrane bioreactors (AnMBRs) enhance carbon neutrality with biomethane recovery from wastewater; however, microbial signaling, which may affect biological performances, was poorly understood. Here, we thus evaluate quorum sensing (QS) dynamics while monitoring acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2) levels during long-term AnMBR operations after sludge inoculation. Significant organic removal and methane production were achieved with the reactor startup. Signal molecule levels varied with transient organic loading rates, depending on their types. A starving condition may cause an increase in short- and medium-chain AHLs and AI-2. Biopolymers, biosolids, volatile fatty acids, and alkalinity levels had positive correlations with short- and medium-chain AHLs and AI-2, whereas methane production had positive correlations with long-chain AHLs. The principal component analysis of QS signal composition and biological performance data explains their interconnectivity. The findings of this study help to understand that QS signals regulate metabolic pathways in addition to microbial group behaviors.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Esgotos , Águas Residuárias , Anaerobiose , Biossólidos , Reatores Biológicos , Metano , Carbono
4.
Chemosphere ; 265: 129166, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33302205

RESUMO

Metal oxide anode electrocatalysts are important for an effective removal of contaminants and the enhancement of electrode durability in the electrochemical oxidation process. Herein, we report the enhanced lifetime of RuOx-TiO2 composite anodes that was achieved by optimizing the fabrication conditions (e.g., the Ru mole fraction, total metal content, and calcination time). The electrode durability was assessed through accelerated service lifetime tests conducted under harsh environmental conditions, by using 3.4% NaCl and 1.0 A/cm2. The electrochemical characteristics of the anodes prepared with metal oxides having different compositions were evaluated using cyclic voltammetry, electrochemical impedance spectroscopy, and X-ray analyses. We noticed that, the larger the Ru mole fraction, the more durable were the electrodes. The RuOx-TiO2 electrodes were found to be highly stable when the Ru mole fraction was >0.7. The 0.8RuOx-0.2TiO2 electrode was selected as the one with the most appropriate composition, considering both its stability and contaminant treatability. The electrodes that underwent a 7-h calcination (between 1 and 10 h) showed the longest lifetime under the tested conditions, because of the formation of a stable Ru oxide structure (i.e., RuO3) and a lower resistance to charge transfer. The electrode deactivation mechanism that occurred due to the dissolution of active catalysts over time was evidenced by an impedance analysis of the electrode itself and surface elemental mapping.


Assuntos
Purificação da Água , Eletrodos , Óxidos , Titânio
5.
Chemosphere ; 260: 127643, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683028

RESUMO

Effective treatment of 2,4-dichlorophenol (2,4-DCP) in wastewater is essential, as it could pose great threat to the environment. A hydrothermal biochar (hydrochar) was used to assist the electrochemical oxidation treatment of 2,4-DCP. The removal of 2,4-DCP using hydrochar in anode and cathode area with and without proton exchange membrane (PEM) under 3-9 V of electrolysis was investigated. Enhanced 2,4-DCP degradation in the anode area was achieved compared with the adsorption or electrolysis alone. The highest 2,4-DCP removal (∼76%) was obtained using the hydrochar in the anode area with PEM under 9 V. The mechanism for the 2,4-DCP removal during the electrolysis included adsorption by hydrochar and electrochemical degradation by the reactive oxygen species (ROS) generated by the electrode as well as the persistent free radicals (PFR) on hydrochar. The OH produced from anode was the predominant ROS contributing to the 2,4-DCP degradation under 9 V of electrolysis.


Assuntos
Carvão Vegetal/química , Clorofenóis/química , Poluentes Químicos da Água/química , Adsorção , Eletrodos , Eletrólise , Oxirredução , Fenóis , Águas Residuárias
6.
J Hazard Mater ; 368: 90-96, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30665112

RESUMO

An electro-crystallization process equipped with a sacrificial aluminum anode was operated under an optimum condition to promote the formation of crystalline cryolite for the recovery of fluoride from synthetic F-containing wastewater. The effects of pH, Al/F molar ratio, initial F concentration, and electrolytes were investigated experimentally, and the results were compared with data obtained from chemical equilibrium modeling. Cryolite was successfully produced under optimum pH values of 5 to 6 and Al/F molar ratios of less than 1/6. The F removal increased with increasing Al/F molar ratio until reaching the molar ratio of 1/6 and decreased thereafter due to the formation of AlFn3-n species. The adsorption of AlFn3-n by Al(OH)3 precipitates contributed part of F removal. The removal efficiency reached 100% when the initial fluoride concentration was high while it was around 90% with the low initial fluoride concentration. XRD and SEM/EDX analysis showed that the obtained solids matched well to the commercial cryolite. Finally, the operating costs of chemical-crystallization (the process with Al ions added chemically) and electro-crystallization were compared, and the cost of the former was less than the latter. Energy consumption was the main contributor to the operating cost of the electro-crystallization process.

7.
Water Res ; 144: 699-708, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30096695

RESUMO

Versatile electrochemical reactions are effective for removing a wide range of water contaminants. This study focuses on the development and testing of bifunctional electrocatalytic filter anodes as reactive and separating media for the simultaneous removal of refractory dissolved organic and particulate contaminants from real wastewater effluents. The results show that the TiO2 particle interlayers formed between the Ti fiber support and the top composite metal oxide catalyst layers assist in reducing filter pores to an effective size range that enables removal of most particulates within the wastewater. The double-sheet design, which is a sandwich-structured module with an internal void space for permeate, prevents filter fouling, and transmembrane pressure can be maintained at a very low level of <5 kPa during batch and continuous flow reactor operations. Substantive and simultaneous removal of dissolved organics (e.g., chromophores, fluorophores, 1,4-dioxane, chemical oxygen demand, and total organic carbon) and particulate matter (i.e., turbidity) are achieved, although removal rates and efficacies differ depending on the electric current density applied. Decolorization and particulate rejection occur swiftly and immediately, but 1,4-dioxane degradation is relatively slow and quite time-dependent. Possible 1,4-dioxane degradation pathways during electrocatalysis are also proposed. Electrochemical filtration technology shows considerable promise for use in the next generation of advanced wastewater treatment solutions.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Filtração , Titânio , Eliminação de Resíduos Líquidos
8.
Water Res ; 126: 40-49, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918077

RESUMO

The synergistic combination of membrane filtration with advanced oxidation is of particular interest for next-generation wastewater treatment technologies. A membrane electro-oxidizer (MEO) hybridizing a submerged microfilter and an electrochemical cell was developed and investigated for tertiary treatment of secondary industrial (textile) wastewater effluent. Laboratory- and pilot-scale MEO systems were designed and evaluated for treatment efficiency and membrane fouling control. The MEO achieved substantial removal of color (50-90%), turbidity (>90%), and bacteria (>4 log) as well as chemical oxygen demand (13-31%) and 1,4-dioxane (∼25-53%). Fluorescence-based parallel factor analysis disclosed the degradation of humic-like organics with fluorophores. Size exclusion chromatograms with organic carbon detection confirmed the removal of specific organic molecules with ∼100 Da. While investigating the effects of oxidant quenching agents, reactive chlorine species and hydrogen peroxide were found to be most responsible for the anodic oxidation of secondary effluent organics. The efficacy of membrane fouling mitigation by the MEO was greater when higher electric current densities were applied, but was not dependent on the number of electrochemical cells installed. The MEO is a promising technology for enhanced organics removal with simultaneous fouling control due to its multifunctional active oxidants.


Assuntos
Técnicas Eletroquímicas/instrumentação , Membranas Artificiais , Indústria Têxtil , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Cloro/química , Cromatografia em Gel , Cor , Corantes/química , Dioxanos/isolamento & purificação , Resíduos Industriais , Oxirredução , Águas Residuárias/química , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA