Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 175, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612467

RESUMO

Blue copper proteins are models for illustrating how proteins tune metal properties. Nevertheless, the mechanisms by which the protein controls the metal site remain to be fully elucidated. A hindrance is that the closed shell Cu(I) site is inaccessible to most spectroscopic analyses. Carbon deuterium (C-D) bonds used as vibrational probes afford nonperturbative, selective characterization of the key cysteine and methionine copper ligands in both redox states. The structural integrity of Nostoc plastocyanin was perturbed by disrupting potential hydrogen bonds between loops of the cupredoxin fold via mutagenesis (S9A, N33A, N34A), variably raising the midpoint potential. The C-D vibrations show little change to suggest substantial alteration to the Cu(II) coordination in the oxidized state or in the Cu(I) interaction with the cysteine ligand. They rather indicate, along with visible and NMR spectroscopy, that the methionine ligand distinctly interacts more strongly with the Cu(I) ion, in line with the increases in midpoint potential. Here we show that the protein structure determines the redox properties by restricting the interaction between the methionine ligand and Cu(I) in the reduced state.

2.
Phys Chem Chem Phys ; 24(36): 21588-21592, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069424

RESUMO

Proteins tune the reactivity of metal sites; less understood is the impact of association with a redox partner. We demonstrate the utility of carbon-deuterium labels for selective analysis of delicate metal sites. Introduced into plastocyanin, they reveal substantial strengthening of the key Cu-Cys89 bond upon association with cytochrome f.


Assuntos
Cobre , Plastocianina , Carbono , Cobre/química , Citocromos f/metabolismo , Deutério , Oxirredução , Plastocianina/química , Plastocianina/metabolismo
3.
Biochemistry ; 60(21): 1699-1707, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34006086

RESUMO

Cytochrome P450s are diverse and powerful catalysts that can activate molecular oxygen to oxidize a wide variety of substrates. Catalysis relies on effective uptake of two electrons and two protons. For cytochrome P450cam, an archetypal member of the superfamily, the second electron must be supplied by the redox partner putidaredoxin (Pdx). Pdx also plays an effector role beyond electron transfer, but after decades the mechanism remains under investigation. We applied infrared spectroscopy to heme-ligated CN- to examine the influence of Pdx binding. The results indicate that Pdx induces the population of a conformation wherein the CN- ligand forms a strong hydrogen bond to a solvent water molecule, experimentally corroborating the formation of a proposed proton delivery network. Further, characterization of T252A P450cam implicates the side chain of Thr252 in regulating the population equilibrium of hydrogen-bonded states within the P450cam/Pdx complex, which could underlie its role in directing activated oxygen toward product formation and preventing reaction uncoupling through peroxide release.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ferredoxinas/farmacologia , Proteínas de Bactérias/química , Cânfora/química , Cânfora 5-Mono-Oxigenase/química , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Transporte de Elétrons , Ferredoxinas/metabolismo , Heme/química , Ligação de Hidrogênio/efeitos dos fármacos , Cinética , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica
4.
Biophys J ; 120(5): 912-923, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33545101

RESUMO

Structural heterogeneity and the dynamics of the complexes of enzymes with substrates can determine the selectivity of catalysis; however, fully characterizing how remains challenging as heterogeneity and dynamics can vary at the spatial level of an amino acid residue and involve rapid timescales. We demonstrate the nascent approach of site-specific two-dimensional infrared (IR) spectroscopy to investigate the archetypical cytochrome P450, P450cam, to better delineate the mechanism of the lower regioselectivity of hydroxylation of the substrate norcamphor in comparison to the native substrate camphor. Specific locations are targeted throughout the enzyme by selectively introducing cyano groups that have frequencies in a spectrally isolated region of the protein IR spectrum as local vibrational probes. Linear and two-dimensional IR spectroscopy were applied to measure the heterogeneity and dynamics at each probe and investigate how they differentiate camphor and norcamphor recognition. The IR data indicate that the norcamphor complex does not fully induce a large-scale conformational change to a closed state of the enzyme adopted in the camphor complex. Additionally, a probe directed at the bound substrate experiences rapidly interconverting states in the norcamphor complex that explain the hydroxylation product distribution. Altogether, the study reveals large- and small-scale structural heterogeneity and dynamics that could contribute to selectivity of a cytochrome P450 and illustrates the approach of site-selective IR spectroscopy to elucidate protein dynamics.


Assuntos
Cânfora 5-Mono-Oxigenase , Sistema Enzimático do Citocromo P-450 , Cânfora , Cânfora 5-Mono-Oxigenase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA