RESUMO
Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task but typically require diluting the blood with a buffer to allow for transmission of light. However, whole blood provides crucial signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We can reliably image cell interactions in microfluidic channels during whole blood flow by motion blur microscopy (MBM) in vitro and automate image analysis using machine learning. MBM provides a low cost, easy to implement alternative to intravital microscopy, for rapid data generation where understanding cell interactions, adhesion, and motility is crucial. MBM is generalizable to studies of various diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.
Assuntos
Adesão Celular , Adesão Celular/fisiologia , Humanos , Microscopia/métodos , Animais , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Células Endoteliais da Veia Umbilical HumanaRESUMO
Alveolar macrophages (AMs) are the major sentinel immune cells in human alveoli and play a central role in eliciting host inflammatory responses upon distal lung viral infection. Here, we incorporated peripheral human monocyte-derived macrophages within a microfluidic human Lung Alveolus Chip that recreates the human alveolar-capillary interface under an air-liquid interface along with vascular flow to study how residential AMs contribute to the human pulmonary response to viral infection. When Lung Alveolus Chips that were cultured with macrophages were infected with influenza H3N2, there was a major reduction in viral titers compared to chips without macrophages; however, there was significantly greater inflammation and tissue injury. Pro-inflammatory cytokine levels, recruitment of immune cells circulating through the vascular channel, and expression of genes involved in myelocyte activation were all increased, and this was accompanied by reduced epithelial and endothelial cell viability and compromise of the alveolar tissue barrier. These effects were partially mediated through activation of pyroptosis in macrophages and release of pro-inflammatory mediators, such as interleukin (IL)-1ß, and blocking pyroptosis via caspase-1 inhibition suppressed lung inflammation and injury on-chip. These findings demonstrate how integrating tissue resident immune cells within human Lung Alveolus Chip can identify potential new therapeutic targets and uncover cell and molecular mechanisms that contribute to the development of viral pneumonia and acute respiratory distress syndrome (ARDS).
RESUMO
Oxygen (O2) binds to hemoglobin (Hb) in the lungs and is then released (dissociated) in the tissues. The Bohr effect is a physiological mechanism that governs the affinity of Hb for O2 based on pH, where a lower pH results in a lower Hb-O2 affinity and higher Hb-O2 dissociation. Hb-O2 affinity and dissociation are crucial for maintaining aerobic metabolism in cells and tissues. Despite its vital role in human physiology, Hb-O2 dissociation measurement is underutilized in basic research and in clinical laboratories, primarily due to the technical complexity and limited throughput of existing methods. We present a rapid Hb-O2 dissociation measurement approach by leveraging the Bohr effect and detecting the optical shift in the Soret band that corresponds to the light absorption by the heme group in Hb. This new method reduces Hb-O2 dissociation measurement time from hours to minutes. We show that Hb deoxygenation can be accelerated chemically at the optimal pH of 6.9. We show that time and pH-controlled deoxygenation of Hb results in rapid and distinct conformational changes in its tertiary structure. These molecular conformational changes are manifested as significant, detectable shifts in Hb's optical absorption spectrum, particularly in the characteristic Soret band (414 nm). We extensively validated the method by testing human blood samples containing normal Hb and Hb variants. We show that rapid Hb-O2 dissociation can be used to screen for and detect Hb-O2 affinity disorders and to evaluate the function and efficacy of Hb-modifying therapies. The ubiquity of optical absorption spectrophotometers positions this approach as an accessible, rapid, and accurate Hb-O2 dissociation measurement method for basic research and clinical use. We anticipate this method's broad adoption will democratize the diagnosis and prognosis of Hb disorders, such as sickle cell disease. Further, this method has the potential to transform the research and development of new targeted and genome-editing-based therapies that aim to modify or improve Hb-O2 affinity.
Assuntos
Hemoglobinas , Óptica e Fotônica , Oxigênio , Humanos , Hemoglobinas/química , Hemoglobinas/metabolismo , Hemoglobinas/análise , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Oxigênio/química , Óptica e Fotônica/métodosRESUMO
There is an unmet clinical need for a non-invasive and cost-effective test for oral squamous cell carcinoma (OSCC) that informs clinicians when a biopsy is warranted. Human beta-defensin 3 (hBD-3), an epithelial cell-derived anti-microbial peptide, is pro-tumorigenic and overexpressed in early-stage OSCC compared to hBD-2. We validate this expression dichotomy in carcinoma in situ and OSCC lesions using immunofluorescence microscopy and flow cytometry. The proportion of hBD-3/hBD-2 levels in non-invasively collected lesional cells compared to contralateral normal cells, obtained by ELISA, generates the beta-defensin index (BDI). Proof-of-principle and blinded discovery studies demonstrate that BDI discriminates OSCC from benign lesions. A multi-center validation study shows sensitivity and specificity values of 98.2% (95% confidence interval [CI] 90.3-99.9) and 82.6% (95% CI 68.6-92.2), respectively. A proof-of-principle study shows that BDI is adaptable to a point-of-care assay using microfluidics. We propose that BDI may fulfill a major unmet need in low-socioeconomic countries where pathology services are lacking.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , beta-Defensinas , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , beta-Defensinas/análise , beta-Defensinas/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Biomarcadores , Carcinoma de Células Escamosas de Cabeça e PescoçoRESUMO
Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.
Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Lesões por Radiação , Animais , Humanos , Lesão Pulmonar/etiologia , Pulmão/efeitos da radiação , Raios gama/efeitos adversos , Dispositivos Lab-On-A-ChipRESUMO
Imaging and characterizing the dynamics of cellular adhesion in blood samples is of fundamental importance in understanding biological function. In vitro microscopy methods are widely used for this task, but typically require diluting the blood with a buffer to allow for transmission of light. However whole blood provides crucial mechanical and chemical signaling cues that influence adhesion dynamics, which means that conventional approaches lack the full physiological complexity of living microvasculature. We propose to overcome this challenge by a new in vitro imaging method which we call motion blur microscopy (MBM). By decreasing the source light intensity and increasing the integration time during imaging, flowing cells are blurred, allowing us to identify adhered cells. Combined with an automated analysis using machine learning, we can for the first time reliably image cell interactions in microfluidic channels during whole blood flow. MBM provides a low cost, easy to implement alternative to intravital microscopy, the in vivo approach for studying how the whole blood environment shapes adhesion dynamics. We demonstrate the method's reproducibility and accuracy in two example systems where understanding cell interactions, adhesion, and motility is crucial-sickle red blood cells adhering to laminin, and CAR-T cells adhering to E-selectin. We illustrate the wide range of data types that can be extracted from this approach, including distributions of cell size and eccentricity, adhesion times, trajectories and velocities of adhered cells moving on a functionalized surface, as well as correlations among these different features at the single cell level. In all cases MBM allows for rapid collection and processing of large data sets, ranging from thousands to hundreds of thousands of individual adhesion events. The method is generalizable to study adhesion mechanisms in a variety of diseases, including cancer, blood disorders, thrombosis, inflammatory and autoimmune diseases, as well as providing rich datasets for theoretical modeling of adhesion dynamics.
RESUMO
Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.
Assuntos
Anemia Falciforme , Laminina , Humanos , Laminina/metabolismo , Eritrócitos , Adesão Celular , Eritrócitos AnormaisRESUMO
Abnormal erythrocyte adhesion owing to polymerization of sickle hemoglobin is central to the pathophysiology of sickle cell disease (SCD). Mature erythrocytes constitute >80% of all erythrocytes in SCD; however, the relative contributions of erythrocytes to acute and chronic vasculopathy in SCD are not well understood. Here, we showed that bending stress exerted on the erythrocyte plasma membrane by polymerization of sickle hemoglobin under hypoxia, enhances sulfatide-mediated abnormal mature erythrocyte adhesion. We hypothesized that sphingomyelinase (SMase) activity, which is upregulated by accumulated bending energy, leads to elevated membrane sulfatide availability, and thus, hypoxic mature erythrocyte adhesion. We found that mature erythrocyte adhesion to laminin in controlled microfluidic experiments is significantly greater under hypoxia than under normoxia (1856 ± 481 vs 78 ± 23, mean ± SEM), whereas sickle reticulocyte (early erythrocyte) adhesion, high to begin with, does not change (1281 ± 299 vs 1258 ± 328, mean ± SEM). We showed that greater mean accumulated bending energy of adhered mature erythrocytes was associated with higher acid SMase activity and increased mature erythrocyte adhesion (P = .022, for acid SMase activity and P = .002 for the increase in mature erythrocyte adhesion with hypoxia, N = 5). In addition, hypoxia results in sulfatide exposure of the erythrocyte membrane, and an increase in SMase, whereas anti-sulfatide inhibits enhanced adhesion of erythrocytes. These results suggest that the lipid components of the plasma membrane contribute to SCD complications. Therefore, sulfatide and the components of its upregulation pathway, particularly SMase, should be further explored as potential therapeutic targets for inhibiting sickle erythrocyte adhesion.
Assuntos
Anemia Falciforme , Hemoglobina Falciforme , Humanos , Hemoglobina Falciforme/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Eritrócitos/metabolismo , Membrana Eritrocítica/metabolismo , Hipóxia/metabolismoRESUMO
Endothelial activation and sickle red blood cell (RBC) adhesion are central to the pathogenesis of sickle cell disease (SCD). Quantitatively, RBC-derived extracellular vesicles (REVs) are more abundant from SS RBCs compared with healthy RBCs (AA RBCs). Sickle RBC-derived REVs (SS REVs) are known to promote endothelial cell (EC) activation through cell signalling and transcriptional regulation at longer terms. However, the SS REV-mediated short-term non-transcriptional response of EC is unclear. Here, we examined the impact of SS REVs on acute microvascular EC activation and RBC adhesion at 2 h. Compared with AA REVs, SS REVs promoted human pulmonary microvascular ECs (HPMEC) activation indicated by increased von Willebrand factor (VWF) expression. Under microfluidic conditions, we found abnormal SS RBC adhesion to HPMECs exposed to SS REVs. This enhanced SS RBC adhesion was reduced by haeme binding protein haemopexin or VWF cleaving protease ADAMTS13 to a level similar to HPMECs treated with AA REVs. Consistent with these observations, haemin- or SS REV-induced microvascular stasis in SS mice with implanted dorsal skin-fold chambers that was inhibited by ADAMTS13. The adhesion induced by SS REVs was variable and was higher with SS RBCs from patients with increased markers of haemolysis (lactate dehydrogenase and reticulocyte count) or a concomitant clinical diagnosis of deep vein thrombosis. Our results emphasise the critical contribution made by REVs to the pathophysiology of SCD by triggering acute microvascular EC activation and abnormal RBC adhesion. These findings may help to better understand acute pathophysiological mechanism of SCD and thereby the development of new treatment strategies using VWF as a potential target.
Assuntos
Anemia Falciforme , Células Endoteliais , Humanos , Animais , Camundongos , Células Endoteliais/patologia , Fator de von Willebrand/metabolismo , Adesão Celular , Eritrócitos/metabolismoRESUMO
Neutrophil recruitment to the inflamed endothelium is a multistep process and is of utmost importance in the development of the hallmark vaso-occlusive crisis in sickle cell disease (SCD). However, there lacks a standardized, clinically feasible approach for assessing neutrophil recruitment to the inflamed endothelium for individualized risk stratification and therapeutic response prediction in SCD. Here, we describe a microfluidic device functionalized with E-selectin, a critical endothelial receptor for the neutrophil recruitment process, as a strategy to assess neutrophil binding under physiologic flow in normoxia and clinically relevant hypoxia in SCD. We show that hypoxia significantly enhances neutrophil binding to E-selectin and promotes the formation of neutrophil-platelet aggregates. Moreover, we identified two distinct patient populations: a more severe clinical phenotype with elevated lactate dehydrogenase levels and absolute reticulocyte counts but lowered fetal hemoglobin levels associated with constitutively less neutrophil binding to E-selectin. Mechanistically, we demonstrate that the extent of neutrophil activation correlates with membrane L-selectin shedding, resulting in the loss of ligand interaction sites with E-selectin. We also show that inhibition of E-selectin significantly reduces leukocyte recruitment to activated endothelial cells. Our findings add mechanistic insight into neutrophil-endothelial interactions under hypoxia and provide a clinically feasible means for assessing neutrophil binding to E-selectin using clinical whole blood samples, which can help guide therapeutic decisions for SCD patients.
Assuntos
Anemia Falciforme , Técnicas Biossensoriais , Humanos , Selectina E/uso terapêutico , Células Endoteliais/metabolismo , Infiltração de Neutrófilos , Adesão Celular , Endotélio/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Dispositivos Lab-On-A-Chip , HipóxiaRESUMO
Hemoglobin (Hb) disorders affect nearly 7% of the world's population. Globally, around 400,000 babies are born annually with sickle cell disease (SCD), primarily in sub-Saharan Africa where morbidity and mortality rates are high. Screening, early diagnosis, and monitoring are not widely accessible due to technical challenges and cost. We hypothesized that multispectral imaging will allow sensitive hemoglobin variant identification in existing affordable paper-based Hb electrophoresis. To test this hypothesis, we developed the first integrated point-of-care multispectral Hb variant test: Gazelle-Multispectral. Here, we evaluated the accuracy of Gazelle-Multispectral for Hb variant newborn screening in 265 newborns with known hemoglobin variants including hemoglobin A (Hb A), hemoglobin F (Hb F), hemoglobin S (Hb S) and hemoglobin C (Hb C). Gazelle-Multispectral detected levels of Hb A, Hb F, Hb S, and Hb C/E/A2, demonstrated high correlations with the results reported by laboratory gold standard high performance liquid chromatography (HPLC) at Pearson Correlation Coefficient = 0.97, 0.97, 0.93, and 0.95. Gazelle-Multispectral demonstrated accuracy of 96.8% in subjects of 0-3 days, and 96.9% in newborns. The ability to obtain accurate results on newborn samples suggest that Gazelle-Multispectral can be suitable for large-scale newborn screening and for diagnosis of SCD in low resource settings.
RESUMO
Red blood cell (RBC) deformability is a valuable hemorheological biomarker that can be used to assess the clinical status and response to therapy of individuals with sickle cell disease (SCD). RBC deformability has been measured by ektacytometry for decades, which uses shear or osmolar stress. However, ektacytometry is a population based measurement that does not detect small-fractions of abnormal RBCs. A single cell-based, functional RBC deformability assay would complement ektacytometry and provide additional information. Here, we tested the relative merits of the OcclusionChip, which measures RBC deformability by microcapillary occlusion, and ektacytometry. We tested samples containing glutaraldehyde-stiffened RBCs for up to 1% volume fraction; ektacytometry detected no significant change in Elongation Index (EI), while the OcclusionChip showed significant differences in Occlusion Index (OI). OcclusionChip detected a significant increase in OI in RBCs from an individual with sickle cell trait (SCT) and from a subject with SCD who received allogeneic hematopoietic stem cell transplant (HSCT), as the sample was taken from normoxic (pO2:159 mmHg) to physiologic hypoxic (pO2:45 mmHg) conditions. Oxygen gradient ektacytometry detected no difference in EI for SCT or HSCT. These results suggest that the single cell-based OcclusionChip enables detection of sickle hemoglobin (HbS)-related RBC abnormalities in SCT and SCD, particularly when the HbS level is low. We conclude that the OcclusionChip is complementary to the population based ektacytometry assays, and providing additional sensitivity and capacity to detect modest abnormalities in red cell function or small populations of abnormal red cells.
RESUMO
Individuals with sickle cell disease (SCD) have persistently elevated thrombin generation that results in a state of systemic hypercoagulability. Antithrombin-III (ATIII), an endogenous serine protease inhibitor, inhibits several enzymes in the coagulation cascade, including thrombin. Here, we utilize a biomimetic microfluidic device to model the morphology and adhesive properties of endothelial cells (ECs) activated by thrombin and examine the efficacy of ATIII in mitigating the adhesion of SCD patient-derived red blood cells (RBCs) and EC retraction. Microfluidic devices were fabricated, seeded with ECs, and incubated under physiological shear stress. Cells were then activated with thrombin with or without an ATIII pretreatment. Blood samples from subjects with normal haemoglobin (HbAA) and subjects with homozygous SCD (HbSS) were used to examine RBC adhesion to ECs. Endothelial cell surface adhesion molecule expression and confluency in response to thrombin and ATIII treatments were also evaluated. We found that ATIII pretreatment of ECs reduced HbSS RBC adhesion to thrombin-activated endothelium. Furthermore, ATIII mitigated cellular contraction and reduced surface expression of von Willebrand factor and vascular cell adhesion molecule-1 (VCAM-1) mediated by thrombin. Our findings suggest that, by attenuating thrombin-mediated EC damage and RBC adhesion to endothelium, ATIII may alleviate the thromboinflammatory manifestations of SCD.
Assuntos
Anemia Falciforme , Trombina , Anticoagulantes/farmacologia , Antitrombinas/metabolismo , Antitrombinas/farmacologia , Adesão Celular , Células Endoteliais , Endotélio Vascular/metabolismo , Eritrócitos , Humanos , Trombina/metabolismo , Trombina/farmacologiaRESUMO
The fetal-to-adult hemoglobin switching at about the time of birth involves a shift in expression from γ-globin to ß-globin in erythroid cells. Effective re-expression of fetal γ-globin can ameliorate sickle cell anemia and ß-thalassemia. Despite the physiological and clinical relevance of this switch, its posttranscriptional regulation is poorly understood. Here, we identify Pumilo 1 (PUM1), an RNA-binding protein with no previously reported functions in erythropoiesis, as a direct posttranscriptional regulator of ß-globin switching. PUM1, whose expression is regulated by the erythroid master transcription factor erythroid Krüppel-like factor (EKLF/KLF1), peaks during erythroid differentiation, binds γ-globin messenger RNA (mRNA), and reduces γ-globin (HBG1) mRNA stability and translational efficiency, which culminates in reduced γ-globin protein levels. Knockdown of PUM1 leads to a robust increase in fetal hemoglobin (â¼22% HbF) without affecting ß-globin levels in human erythroid cells. Importantly, targeting PUM1 does not limit the progression of erythropoiesis, which provides a potentially safe and effective treatment strategy for sickle cell anemia and ß-thalassemia. In support of this idea, we report elevated levels of HbF in the absence of anemia in an individual with a novel heterozygous PUM1 mutation in the RNA-binding domain (p.(His1090Profs∗16); c.3267_3270delTCAC), which suggests that PUM1-mediated posttranscriptional regulation is a critical player during human hemoglobin switching.
Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Globinas beta/genética , Proteínas de Transporte , Anemia Falciforme/genética , Proteínas de Ligação a RNA/genéticaRESUMO
This study aims to analyze the concept of anticipatory burden in adult-child caregivers. A systematic literature review was performed using four databases, Pubmed, CINAHL, PsycINFO and Medline, with the keywords of "anticipatory burden" and "anticipated burden". Simplified Wilson's classic concept analysis modified by Walker and Avant was employed to identify the attributes, antecedents and consequences of anticipatory burden in the adult-child caregivers. Eighteen articles were analyzed. Attributes of anticipatory burden in adult-child caregivers were found to be: (1) subjective burden, (2) anticipation, (3) overestimation, (4) inability, and (5) family relationship. Antecedents were identified as: (1) potential care recipients, (2) caregiving willingness, and (3) a lack of resources. Consequences included: (1) prediction of caregiving willingness, (2) impacts on caregivers' health, (3) intervention promotion, and (4) behavioral changes. As the adult-child caregiver is one of the main types of family caregivers for the fast-growing aging population, it is important to understand the attributes, antecedents, and consequences of their anticipatory burden. Based on the results of this study, resources such as intervention, policy, and counseling services are recommended to help adult-child caregivers lower their anticipatory burden and get better prepared for providing family care.
RESUMO
Anemia affects over 25% of the world's population with the heaviest burden borne by women and children. Genetic hemoglobin (Hb) variants, such as sickle cell disease, are among the major causes of anemia. Anemia and Hb variant are pathologically interrelated and have an overlapping geographical distribution. We present the first point-of-care (POC) platform to perform both anemia detection and Hb variant identification, using a single paper-based electrophoresis test. Feasibility of this new integrated diagnostic approach is demonstrated via testing individuals with anemia and/or sickle cell disease. Hemoglobin level determination is performed by an artificial neural network (ANN) based machine learning algorithm, which achieves a mean absolute error of 0.55 g dL-1 and a bias of -0.10 g dL-1 against the gold standard (95% limits of agreement: 1.5 g dL-1) from Bland-Altman analysis on the test set. Resultant anemia detection is achieved with 100% sensitivity and 92.3% specificity. With the same tests, subjects with sickle cell disease were identified with 100% sensitivity and specificity. Overall, the presented platform enabled, for the first time, integrated anemia detection and hemoglobin variant identification using a single point-of-care test.
Assuntos
Anemia Falciforme , Eletroforese em Microchip , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Feminino , Testes Hematológicos , Hemoglobinas/análise , Hemoglobinas/genética , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Testes ImediatosRESUMO
Anemia, characterized by low blood hemoglobin level, affects about 25% of the world's population with the heaviest burden borne by women and children. Anemia leads to impaired cognitive development in children, as well as high morbidity and early mortality among sufferers. Anemia can be caused by nutritional deficiencies, oncologic treatments and diseases, and infections such as malaria, as well as inherited hemoglobin or red cell disorders. Effective treatments are available for anemia upon early detection and the treatment method is highly dependent on the cause of anemia. There is a need for point-of-care (POC) screening, early diagnosis, and monitoring of anemia, which is currently not widely accessible due to technical challenges and cost, especially in low- and middle-income countries where anemia is most prevalent. This review first introduces the evolution of anemia detection methods followed by their implementation in current commercially available POC anemia diagnostic devices. Then, emerging POC anemia detection technologies leveraging new methods are reviewed. Finally, we highlight the future trends of integrating anemia detection with the diagnosis of relevant underlying disorders to accurately identify specific root causes and to facilitate personalized treatment and care.
Assuntos
Anemia , Sistemas Automatizados de Assistência Junto ao Leito , Anemia/diagnóstico , Hemoglobinas/análise , Humanos , Programas de RastreamentoRESUMO
Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contribute to vaso-occlusion and disease pathophysiology. There are few functional in vitro assays for standardized assessment of RBC-mediated microvascular occlusion. Here, we present the design, fabrication, and clinical testing of the Microfluidic Impedance Red Cell Assay (MIRCA) with embedded capillary network-based micropillar arrays and integrated electrical impedance measurement electrodes to address this need. The micropillar arrays consist of microcapillaries ranging from 12 µm to 3 µm, with each array paired with two sputtered gold electrodes to measure the impedance change of the array before and after sample perfusion through the microfluidic device. We define RBC occlusion index (ROI) and RBC electrical impedance index (REI), which represent the cumulative percentage occlusion and cumulative percentage impedance change, respectively. We demonstrate the promise of MIRCA in two common red cell disorders, SCD and hereditary spherocytosis. We show that the electrical impedance measurement reflects the microvascular occlusion, where REI significantly correlates with ROI that is obtained via high-resolution microscopy imaging of the microcapillary arrays. Further, we show that RBC-mediated microvascular occlusion, represented by ROI and REI, associates with clinical treatment outcomes and correlates with in vivo hemolytic biomarkers, lactate dehydrogenase (LDH) level and absolute reticulocyte count (ARC) in SCD. Impedance measurement obviates the need for high-resolution imaging, enabling future translation of this technology for widespread access, portable and point-of-care use. Our findings suggest that the presented microfluidic design and the integrated electrical impedance measurement provide a reproducible functional test for standardized assessment of RBC-mediated microvascular occlusion. MIRCA and the newly defined REI may serve as an in vitro therapeutic efficacy benchmark for assessing the clinical outcome of emerging RBC-modifying targeted and curative therapies.
Assuntos
Anemia Falciforme , Microfluídica , Impedância Elétrica , Contagem de Eritrócitos , Eritrócitos , HumanosRESUMO
OBJECTIVES: We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS: Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS: We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS: We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.
Assuntos
Anemia Falciforme , Hidroxiureia , Anemia Falciforme/tratamento farmacológico , Eritrócitos , Hemoglobinas , Humanos , Hidroxiureia/uso terapêutico , Microcirculação , Microfluídica , FenótipoRESUMO
Sickle cell disease (SCD), which afflicts 100 000 Americans, as well as millions worldwide, is associated with anemia, lifelong morbidity, and early mortality. Abnormal adhesion of sickle red blood cells (RBCs) to activated vascular endothelium may contribute acutely to the initiation of painful vaso-occlusive crises and chronically to endothelial damage in SCD. Sickle RBCs adhere to activated endothelium through several adhesion mechanisms. In this study, using whole blood from 17 people with heterozygous SCD (HbS variant) and 55 people with homozygous SCD (HbSS) analyzed in an in vitro microfluidic assay, we present evidence for the adhesion of sickle RBCs to immobilized recombinant intercellular adhesion molecule 1 (ICAM-1). We show that sickle RBC adhesion to ICAM-1 in vitro is associated with evidence of hemolysis in vivo, marked by elevated lactate dehydrogenase levels, reticulocytosis, and lower fetal hemoglobin levels. Further, RBC adhesion to ICAM-1 correlates with a history of intracardiac or intrapulmonary right-to-left shunts. Studies of potential ICAM-1 ligands on RBC membranes revealed that RBC-ICAM-1 interactions were mediated by fibrinogen bound to the RBC membrane. We describe, for the first time, RBC rolling behavior on ICAM-1 under high shear rates. Our results suggest that firm adhesion of sickle RBCs to ICAM-1 most likely occurs in postcapillary venules at low physiological shear rates, which is facilitated by initial rolling in high shear regions (eg, capillaries). Inhibition of RBC and ICAM-1 interactions may constitute a novel therapeutic target in SCD.