Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1422461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076595

RESUMO

Introduction: Plant polysaccharide are widely studied as potential prebiotics because of their potential to protect and enhance the immunity of lambs. Methods: In this study, the polysaccharide content of Alhagi maurorum Medik from Aksu (AK) and Shanshan (SS) at different cutting periods was determined, and the functions of Alhagi maurorum Medik polysaccharide were investigated to useas an immunomodulator. Results: Our results indicated that the content of Alhagi maurorum Medik polysaccharide is the highest at the maturity stage, and the polysaccharide content of Alhagi maurorum Medik produced in Shanshan area is higher as compared to the Aksu area. The serum IgG, duodenum IgA, TNF-α, IL-4, IL-10 contents, jejunum IgA, TNF-α, IL-4, IL-17 contents, ileum IgA, IL-17 contents, duodenum villus height, crypt depth and jejunum crypt depth of lambs were significantly adjusted in the SS group as compared to CK control group and AK groups (p < 0.05). Furthemore, the sequencing results showed that SS polysaccharide promoted the release of large amounts of IgA and enhanced the immunal function of intestine by regulating the IgA production pathway and B-cell receptor signaling to activate B cells in the T-dependent pathway. Discussion: Altogether, Alhagi maurorum Medik polysaccharide from SS group holds a promising potential to be used as a valuable immunopotentiator for optimizing the immune system of intestine in lambs.

2.
Front Pharmacol ; 15: 1379394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746008

RESUMO

Polysaccharides derived from Alhagi camelorum Fisch possess diverse activities, making them a potential prebiotic candidates for enhancing lamb health. This study investigated the immunomodulatory effects of Alhagi camelorum Fisch polysaccharides from Aksu (AK) and Shanshan (SS) regions on sheep lambs. The results showed that sheep lambs in the SS group exhibited significantly increased (p < 0.05) average daily gain, levels of growth hormone (GH), insulin (INS), IgA and IgM, and cytokines IL-4, IL-10, IL-17, TNF-α and IFN-γ compared to those in the control check (CK) group. Moreover, the SS treatment significantly increased the diversity and abundance of beneficial bacteria, while concurrently diminishing the prevalence of harmful bacteria. Additionally, it modulated various metabolic pathways, promoted lamb growth, improved immunity, reduced the risk of gastrointestinal disease and improved the composition of gastrointestinal microbiota. In summary, our findings highlight the potential of SS treatment in enhancing gastrointestinal health of sheep lambs by improving intestinal function, immunity, and gut microbiome. Consequently, these results suggest that Alhagi camelorum Fisch polysaccharides derived from Shanshan regions holds promising potential as a valuable intervention for optimizing growth performance in sheep lambs.

3.
Int J Biol Macromol ; 269(Pt 2): 132077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723832

RESUMO

This study investigated the structure of acid Alhagi camelorum Fischa polysaccharide (aAP) and its impact on intestinal activity in mice. The results showed that aAP comprised of the fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, glucuronic acid with the molar ratio of 0.81:14.97:10.84:11.14:3.26:0.80:0.80:54.92:2.47 with the molecular weight (Mw) of 22.734 kDa. Additionally, the composition of aAP was assessed via FT-IR, methylation, and NMR analyses, indicating that the backbone of the aAP was consisted of →4)-α-D-GalpA-6-OMe-(1 â†’ 4)-α-GalpA-(1 â†’ and →4)-α-D-GalpA-6-OMe-(1 â†’ 2)-α-L-Rhap-(1→, as well as →4)-ß-D-Galp- and →5)-α-L-Araf- for the branched chain. Furthermore, ICR mice underwent intragastric administration of different concentrations of aAP for 7 consecutive days. The results showed that aAP enhanced the murine spleen and thymus indices, promoted the secretion of serum lgG antibody, intestinal lgA antibody and intestinal cytokines, improved the morphology of intestinal villi and crypts, enhanced quantity of intestinal IELs and IgA+ cells, and activated T lymphocytes and DC cells in MLNs. In summary, these findings suggest that the utilization of aAP could enhance the immune response of the murine intestinal mucosa.


Assuntos
Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Camundongos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Camundongos Endogâmicos ICR , Peso Molecular , Baço/efeitos dos fármacos , Baço/imunologia , Baço/citologia , Timo/efeitos dos fármacos , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA