Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37561402

RESUMO

Polyunsaturated fatty acids (PUFA), such as omega-6 (n-6) and omega-3 (n-3), play a vital role in nutrient metabolism, inflammatory response, and gene regulation. microRNAs (miRNA), which can potentially degrade targeted messenger RNAs (mRNA) and/or inhibit their translation, might play a relevant role in PUFA-related changes in gene expression. Although differential expression analyses can provide a comprehensive picture of gene expression variation, they are unable to disentangle when in the mRNA life cycle the regulation of expression is taking place, including any putative functional miRNA-driven repression. To capture this, we used an exon-intron split analysis (EISA) approach to account for posttranscriptional changes in response to extreme values of n-6/n-3 PUFA ratio. Longissimus dorsi muscle samples of male and female piglets from sows fed with n-6/n-3 PUFA ratio of 13:1 (SOY) or 4:1 (LIN), were analyzed in a bidirectional contrast (LIN vs. SOY, SOY vs. LIN). Our results allowed the identification of genes showing strong posttranscriptional downregulation signals putatively targeted by significantly upregulated miRNA. Moreover, we identified genes primarily involved in the regulation of lipid-related metabolism and immune response, which may be associated with the pro- and anti-inflammatory functions of the n-6 and n-3 PUFA, respectively. EISA allowed us to uncover regulatory networks complementing canonical differential expression analyses, thus providing a more comprehensive view of muscle metabolic changes in response to PUFA concentration.


The relationship between dietary lipids, such as omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and gene expression regulation was explored in piglet muscle. While these PUFA can influence nutrient metabolism and inflammatory response, small regulatory molecules called microRNAs (miRNA) can also influence the activity of genes. In this experiment, we used a computational approach dubbed exon­intron split analysis (EISA) to fully understand the role of miRNA in this context and how the genes and miRNA respond to changes in PUFA levels. Our findings demonstrated that some genes involved in lipid metabolism and immune response were affected by different PUFA concentrations and that EISA provides a more comprehensive view of how genes are regulated throughout their life cycle.


Assuntos
Ácidos Graxos Ômega-3 , MicroRNAs , Animais , Feminino , Suínos/genética , Masculino , Íntrons , Ácidos Graxos Insaturados , Ácidos Graxos Ômega-3/farmacologia , Dieta/veterinária , MicroRNAs/genética , Éxons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
PLoS One ; 18(5): e0283231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141193

RESUMO

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids with antagonistic inflammatory functions that play vital roles in metabolic health and immune response. Current commercial swine diets tend to over-supplement with n-6 PUFAs, which may increase the likelihood of developing inflammatory diseases and affect the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to identify differentially expressed mRNAs and miRNAs. The observed differentially expressed mRNAs were associated to biological pathways related to muscle growth and immunomodulation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degradation. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and enriched pathways involved in lipid metabolism, cell proliferation and inflammation.


Assuntos
Ácidos Graxos Ômega-3 , MicroRNAs , Suínos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculo Esquelético/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Perfilação da Expressão Gênica
3.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566276

RESUMO

Elevated omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) ratios in swine diets can potentially impose a higher risk of inflammatory and metabolic diseases in swine. A low ratio between the two omega PUFAs has beneficial effects on sows' and piglets' production performance and immunity status. At present, there are few studies on how sow nutrition directly affects the protein and fat deposition in suckling piglets. Two groups of sows were fed diets with high or low n-6/n-3 polyunsaturated ratios of 13:1 (SOY) and 4:1 (LIN), respectively, during gestation and lactation. Longissimus dorsi muscle and adipose tissue from newborn piglets, nourished only with sow's milk, were subjected to fatty acid profiling by gas chromatography-mass spectrometry (GC-MS) and to proteomics assays based on nano-liquid chromatography coupled to high-resolution tandem mass spectrometry (nLC-HRMS). Fatty acid profiles on both muscle and adipose tissues resembled the magnitude of the differences between fatty acid across diets. Proteomic analysis revealed overabundance of 4 muscle and 11 adipose tissue proteins in SOY compared to LIN in both piglet tissues. The detected overabundance of haptoglobin, an acute-phase protein, and the stimulation of protein-coding genes and proteins related to the innate immune response and acute inflammatory response could be associated with the pro-inflammatory role of n-6 PUFAs.


Assuntos
Ácidos Graxos Ômega-3 , Proteômica , Tecido Adiposo/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/análise , Feminino , Lactação , Leite/química , Músculos/química , Gravidez , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA