Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39431918

RESUMO

Ever-increasing consumption of plastic products and poor waste management infrastructure have resulted in a massive accumulation of plastic waste in environments, causing adverse effects on climate and living organisms. Although contributing ∼10% towards the total plastic waste management infrastructure, the chemical recycling of plastic waste is considered a viable option to valorize plastic waste into platform chemicals and liquid fuels. Among the various chemical upcycling processes, catalytic hydroprocessing has attracted interest due to its potential to offer higher selectivity than other thermal-based approaches. Heterogeneous catalytic hydroprocessing reactions offer routes for converting plastic waste into essential industrially important molecules. However, the functional group similarities in the plastic polymers frequently constrain reaction selectivity. Therefore, a fundamental understanding of metal selection for targeted bond activation and plastic interaction on solid surfaces is essential for catalyst design and reaction engineering. In this review, we critically assess the structure-activity relationship of catalysts used in the hydroprocessing of plastic waste for the selective production of liquid hydrocarbons. We discuss the significance of C-C/C-O bond activation in plastic waste through active site modulation and surface modification to elucidate reaction networks and pathways for achieving selective bond activation and cleavage. Finally, we highlight current challenges and future opportunities in catalyst design to upcycle real-life plastic waste and produce selective liquid hydrocarbons.

2.
ChemSusChem ; : e202401146, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121375

RESUMO

Upcycling plastic waste into commodity chemicals is recognized as an environmentally benign solution and beneficial for the sustained growth of humanity. Nevertheless, transition metal-free catalysts and energy-efficient conditions pose significant challenges due to the robust mechanical properties of plastics. Here, a strategy for selective production of phenol by upcycling polycarbonate waste via direct depolymerization and Csp2-Csp3 bond cleavage in an aqueous medium under mild conditions is reported. The commercial zeolites efficiently catalyze the depolymerization, Csp2-Csp3 bond hydrolysis, and direct Csp2-Csp3 bond scission at Cα of PC. Among all evaluated zeolites, HY (Si/Al=15) showed excellent catalytic performance, attributed to the ~75 % yield of phenol and ~15 % of acetone. The approach also employs different municipal waste PC for upcycling. Studies reveal that HY (15) exhibits high catalytic efficiency and phenol yield due to its optimum acid sites and textual properties. A scale-up experiment demonstrated that 3.1 g of phenol was produced from 5.0 g of PC, and the mass balance was 90 %. A combination of control experiments, NMR analysis, and DFT studies proposed the reaction pathway. Our findings present a sustainable avenue for upcycling PC waste and offer a new way to produce phenol, contributing to the advancement of a circular economy.

3.
Chem Asian J ; 18(13): e202300294, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37162005

RESUMO

Silicoalumiophosphates (SAPOs) are microporous crystalline materials extensively utilized as adsorbents and catalysts. The present work utilized two strategies to synthesize nanocrystalline SAPO-11. The first strategy involves a surfactant as a mesoporogen to reduce the crystallite size and increase the surface area for the materials synthesized at 200 °C in 2 days. In the second strategy, the synthesis temperature and time were significantly reduced to 160 °C and 3 h using propylene oxide as a pH accelerator. The reduction in the particle size and the improvement in the surface area were achieved using propyltriethoxysilane, which inhibited the growth of SAPO-11 particles. The materials were thoroughly characterized using XRD, N2 -sorption, FTIR, pyridine-adsorbed FTIR, electron microscopy, XPS, and NMR. The surfactant-assisted synthesis formed a nanorod morphology with a large external and BET surface area. The low-temperature synthesis involving silane as a growth inhibitor and propylene oxide as a pH modulator demonstrated a rectangular nanoplatelet morphology with a large surface area. The synthesis was scaled up to 10 g with no change in the experimental parameters. A synthesis strategy facilitating nuclei formation and retarding the growth of particle size will attract academia and industrial researchers to utilize these strategies for the manufacturing of zeolites of different frameworks on a large scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA