RESUMO
BACKGROUND: Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available. METHODOLOGY: Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice. CONCLUSIONS: Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library.
Assuntos
Cromossomos Artificiais Bacterianos , Células-Tronco Embrionárias/citologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Células-Tronco Embrionárias/metabolismo , Marcadores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/metabolismoRESUMO
Osteoblasts are essential for maintaining bone mass, avoiding osteoporosis, and repairing injured bone. Activation of osteoblast G protein-coupled receptors (GPCRs), such as the parathyroid hormone receptor, can increase bone mass; however, the anabolic mechanisms are poorly understood. Here we use "Rs1," an engineered GPCR with constitutive G(s) signaling, to evaluate the temporal and skeletal effects of G(s) signaling in murine osteoblasts. In vivo, Rs1 expression induces a dramatic anabolic skeletal response, with midfemur girth increasing 1,200% and femur mass increasing 380% in 9-week-old mice. Bone volume, cellularity, areal bone mineral density, osteoblast gene markers, and serum bone turnover markers were also elevated. No such phenotype developed when Rs1 was expressed after the first 4 weeks of postnatal life, indicating an exquisite temporal sensitivity of osteoblasts to Rs1 expression. This pathway may represent an important determinant of bone mass and may open future avenues for enhancing bone repair and treating metabolic bone diseases.