Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895225

RESUMO

Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and has traditionally been thought to begin with the uptake of the Sec carrier selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP undergoes metabolisation via selenocysteine lyase (SCLY), producing selenide, a substrate used by selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor - selenophosphate - for the biosynthesis of the selenocysteine tRNA. Here, we report the discovery of an alternative pathway mediating Sec metabolisation that is independent of SCLY and mediated by peroxiredoxin 6 (PRDX6). Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the presence and functional significance of this alternative route in cancer cells where we reveal a notable association between elevated expression of PRDX6 with a highly aggressive neuroblastoma subtype. Altogether, our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering new avenues for therapeutic exploitation.

2.
Biomolecules ; 13(6)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371550

RESUMO

Protein aggregates are a hallmark of Alzheimer's disease (AD). Extensive studies have focused on ß-amyloid plaques and Tau tangles. Here, we illustrate a novel source of protein aggregates in AD neurons from organelle off-target proteins. Bax is a mitochondrial pore-forming pro-death protein. What happens to Bax if it fails to target mitochondria? We previously showed that a mitochondrial target-deficient alternatively spliced variant, Bax∆2, formed large cytosolic protein aggregates and triggered caspase 8-mediated cell death. Bax∆2 protein levels were low in most normal organs and the proteins were quickly degraded in cancer. Here, we found that 85% of AD patients had Bax∆2 required alternative splicing. Increased Bax∆2 proteins were mostly accumulated in neurons of AD-susceptible brain regions. Intracellularly, Bax∆2 aggregates distributed independently of Tau tangles. Interestingly, Bax∆2 aggregates triggered the formation of stress granules (SGs), a large protein-RNA complex involved in AD pathogenesis. Although the functional domains required for aggregation and cell death are the same as in cancer cells, Bax∆2 relied on SGs, not caspase 8, for neuronal cell death. These results imply that the aggregation of organelle off-target proteins, such as Bax∆2, broadens the scope of traditional AD pathogenic proteins that contribute to the neuronal stress responses and AD pathogenesis.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Humanos , Doença de Alzheimer/metabolismo , Agregados Proteicos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Oncoimmunology ; 12(1): 2184130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875552

RESUMO

Despite aggressive treatment, the 5-year event-free survival rate for children with high-risk neuroblastoma is <50%. While most high-risk neuroblastoma patients initially respond to treatment, often with complete clinical remission, many eventually relapse with therapy-resistant tumors. Novel therapeutic alternatives that prevent the recurrence of therapy-resistant tumors are urgently needed. To understand the adaptation of neuroblastoma under therapy, we analyzed the transcriptomic landscape in 46 clinical tumor samples collected before (PRE) or after (POST) treatment from 22 neuroblastoma patients. RNA sequencing revealed that many of the top-upregulated biological processes in POST MYCN amplified (MNA+) tumors compared to PRE MNA+ tumors were immune-related, and there was a significant increase in numerous genes associated with macrophages. The infiltration of macrophages was corroborated by immunohistochemistry and spatial digital protein profiling. Moreover, POST MNA+ tumor cells were more immunogenic compared to PRE MNA+ tumor cells. To find support for the macrophage-induced outgrowth of certain subpopulations of immunogenic tumor cells following treatment, we examined the genetic landscape in multiple clinical PRE and POST tumor samples from nine neuroblastoma patients revealing a significant correlation between an increased amount of copy number aberrations (CNA) and macrophage infiltration in POST MNA+ tumor samples. Using an in vivo neuroblastoma patient-derived xenograft (PDX) chemotherapy model, we further show that inhibition of macrophage recruitment with anti-CSF1R treatment prevents the regrowth of MNA+ tumors following chemotherapy. Taken together, our work supports a therapeutic strategy for fighting the relapse of MNA+ neuroblastoma by targeting the immune microenvironment.


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Criança , Animais , Humanos , Proteína Proto-Oncogênica N-Myc , Modelos Animais de Doenças , Macrófagos , Microambiente Tumoral
4.
Histochem Cell Biol ; 159(2): 209-220, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35951115

RESUMO

Bax is a well-known universal proapoptotic protein. Bax protein is detected in almost all human organs, and its expression levels can be correlated with disease progression and therapeutic efficacy in certain settings. Interestingly, increasing evidence has shown that mature neuronal cell death is often not typical apoptosis. Most results on the expression of Bax proteins (predominantly Baxα) in the human brain come from disease-oriented studies, and the data on Bax protein expression in the normal brain are limited and lack consistency due to many variable factors. Here, we analyzed Bax RNA and protein expression data from multiple databases and performed immunostaining of over 80 samples from 25 healthy subjects across 7 different brain regions. We found that Bax protein expression was heterogeneous across brain regions and individual subjects. Both neurons and glial cells, such as astrocytes, could be Bax positive, but Bax positivity appeared to be highly selective, even within the same cell type in the same region. Furthermore, Bax proteins could be localized in the cytosol (evenly spread or concentrated to one region), nucleus or nucleolus depending on the cell type. Such variation and distribution in Bax expression suggest that Bax may function differently in the human brain than in other organs.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas , Humanos , Proteína X Associada a bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/metabolismo , Apoptose
5.
Sci Transl Med ; 14(666): eabm6391, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223446

RESUMO

The bone marrow microenvironment provides indispensable factors to sustain blood production throughout life. It is also a hotspot for the progression of hematologic disorders and the most frequent site of solid tumor metastasis. Preclinical research relies on xenograft mouse models, but these models preclude the human-specific functional interactions of stem cells with their bone marrow microenvironment. Instead, human mesenchymal cells can be exploited for the in vivo engineering of humanized niches, which confer robust engraftment of human healthy and malignant blood samples. However, mesenchymal cells are associated with major reproducibility issues in tissue formation. Here, we report the fast and standardized generation of human mini-bones by a custom-designed human mesenchymal cell line. These resulting humanized ossicles (hOss) consist of fully mature bone and bone marrow structures hosting a human mesenchymal niche with retained stem cell properties. As compared to mouse bones, we demonstrate superior engraftment of human cord blood hematopoietic cells and primary acute myeloid leukemia samples and also validate hOss as a metastatic site for breast cancer cells. We further report the engraftment of neuroblastoma patient-derived xenograft cells in a humanized model, recapitulating clinically described osteolytic lesions. Collectively, our human mini-bones constitute a powerful preclinical platform to model bone-developing tumors using patient-derived materials.


Assuntos
Leucemia Mieloide Aguda , Nicho de Células-Tronco , Animais , Osso e Ossos , Modelos Animais de Doenças , Hematopoese , Humanos , Camundongos , Reprodutibilidade dos Testes , Microambiente Tumoral
6.
Sci Adv ; 8(43): eabq4617, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306349

RESUMO

Chemotherapy resistance and relapses are common in high-risk neuroblastoma (NB). Here, we developed a clinically relevant in vivo treatment protocol mimicking the first-line five-chemotherapy treatment regimen of high-risk NB and applied this protocol to mice with MYCN-amplified NB patient-derived xenografts (PDXs). Genomic and transcriptomic analyses were used to reveal NB chemoresistance mechanisms. Intrinsic resistance was associated with high genetic diversity and an embryonic phenotype. Relapsed NB with acquired resistance showed a decreased adrenergic phenotype and an enhanced immature mesenchymal-like phenotype, resembling multipotent Schwann cell precursors. NBs with a favorable treatment response presented a lineage-committed adrenergic phenotype similar to normal neuroblasts. Novel integrated phenotypic gene signatures reflected treatment response and patient prognosis. NB organoids established from relapsed PDX tumors retained drug resistance, tumorigenicity, and transcriptional cell states. This work sheds light on the mechanisms of NB chemotherapy response and emphasizes the importance of transcriptional cell states in chemoresistance.

7.
Front Oncol ; 12: 1085270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776363

RESUMO

Neuroblastoma is a childhood cancer derived from the sympathetic nervous system. High-risk neuroblastoma patients have a poor overall survival and account for ~15% of childhood cancer deaths. There is thus a need for clinically relevant and authentic models of neuroblastoma that closely resemble the human disease to further interrogate underlying mechanisms and to develop novel therapeutic strategies. Here we review recent developments in patient-derived neuroblastoma xenograft models and in vitro cultures. These models can be used to decipher mechanisms of metastasis and treatment resistance, for drug screening, and preclinical drug testing. Patient-derived neuroblastoma models may also provide useful information about clonal evolution, phenotypic plasticity, and cell states in relation to neuroblastoma progression. We summarize current opportunities for, but also barriers to, future model development and application. Integration of patient-derived models with patient data holds promise for the development of precision medicine treatment strategies for children with high-risk neuroblastoma.

8.
PLoS One ; 15(11): e0242700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211772

RESUMO

Mitochondrial fusion and fission are dynamic processes regulated by the cellular microenvironment. Under nutrient starvation conditions, mitochondrial fusion is strengthened for energy conservation. We have previously shown that newborns of Ubl4A-deficient mice were more sensitive to starvation stress with a higher rate of mortality than their wild-type littermates. Ubl4A binds with the actin-related protein Arp2/3 complex to synergize the actin branching process. Here, we showed that deficiency in Ubl4A resulted in mitochondrial fragmentation and apoptosis. A defect in the fusion process was the main cause of the mitochondrial fragmentation and resulted from a shortage of primed Arp2/3 complex pool around the mitochondria in the Ubl4A-deficient cells compared to the wild-type cells. As a result, the mitochondrial fusion process was not undertaken quickly enough to sustain starvation stress-induced cell death. Consequently, fragmented mitochondria lost their membrane integrity and ROS was accumulated to trigger caspase 9-dependent apoptosis before autophagic rescue. Furthermore, the wild-type Ubl4A, but not the Arp2/3-binding deficient mutant, could rescue the starvation-induced mitochondrial fragmentation phenotype. These results suggest that Ubl4A promotes the mitochondrial fusion process via Arp2/3 complex during the initial response to nutrient deprivation for cell survival.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Estresse Fisiológico , Ubiquitinas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Ubiquitinas/genética
9.
Sci Transl Med ; 12(562)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967973

RESUMO

Neuroblastoma is a childhood malignancy with often dismal prognosis; relapse is common despite intense treatment. Here, we used human tumor organoids representing multiple MYCN-amplified high-risk neuroblastomas to perform a high-throughput drug screen with approved or emerging oncology drugs. Tumor-selective effects were calculated using drug sensitivity scores. Several drugs with previously unreported anti-neuroblastoma effects were identified by stringent selection criteria. ARRY-520, an inhibitor of kinesin spindle protein (KSP), was among those causing reduced viability. High expression of the KSP-encoding gene KIF11 was associated with poor outcome in neuroblastoma. Genome-scale loss-of-function screens in hundreds of human cancer cell lines across 22 tumor types revealed that KIF11 is particularly important for neuroblastoma cell viability. KSP inhibition in neuroblastoma patient-derived xenograft (PDX) cells resulted in the formation of abnormal monoastral spindles, mitotic arrest, up-regulation of mitosis-associated genes, and apoptosis. In vivo, KSP inhibition caused regression of MYCN-amplified neuroblastoma PDX tumors. Furthermore, treatment of mice harboring orthotopic neuroblastoma PDX tumors resulted in increased survival. Our results suggested that KSP inhibition could be a promising treatment strategy in children with high-risk neuroblastoma.


Assuntos
Cinesinas , Neuroblastoma , Animais , Apoptose , Linhagem Celular Tumoral , Cinesinas/genética , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico
10.
Histochem Cell Biol ; 154(1): 41-53, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32200452

RESUMO

The pro-apoptotic Bax isoform Bax∆2 was originally discovered in cancer patients with a microsatellite guanine deletion (G8 to G7). This deletion leads to an early stop codon; however, when combined with the alternative splicing of exon 2, the reading frame is restored allowing production of a full-length protein (Bax∆2). Unlike the parental Baxα, Bax∆2 triggers apoptosis through a non-mitochondrial pathway and the expression in human tissues was unknown. Here, we analyzed over 1000 tissue microarray samples from 13 different organs using immunohistochemistry. Bax∆2-positive cells were detected in all examined organs at low rates (1-5%) and mainly scattered throughout the connective tissues. Surprisingly, over 70% of normal colon samples scored high for BaxΔ2-positive staining. Only 7% of malignant colon samples scored high, with most high-grade tumors being negative. A similar pattern was observed in most organs examined. We also showed that both Baxα and Bax∆2 can co-exist in the same cells. Genotyping showed that the majority of Bax∆2-positive normal tissues contain no G7 mutation, but an unexpected high rate of G9 was observed. Although the underlying mechanism remains to be explored, the inverse correlation of Bax∆2 expression with tissue malignancy suggests that it may have a clinical implication in cancer development and treatment.


Assuntos
Neoplasias do Colo/diagnóstico , Proteína X Associada a bcl-2/análise , Genótipo , Humanos , Imuno-Histoquímica , Mutação , Proteína X Associada a bcl-2/genética
11.
Histochem Cell Biol ; 150(1): 77-82, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29663074

RESUMO

Bax∆2 is a pro-apoptotic protein originally discovered in colon cancer patients with high microsatellite instability. Unlike most pro-apoptotic Bax family members, Bax∆2 mediates cell death through a non-mitochondrial caspase 8-dependent pathway. In the scope of analyzing the distribution of Bax∆2 expression in human tissues, we examined a panel of human brain samples. Here, we report four cerebellar cases in which the subjects had no neurological disorder or disease documented. We found Bax∆2 positive cells scattered in all areas of the cerebellum, but most strikingly concentrated in Purkinje cell bodies and dendrites. Two out the four subjects tested had strong Bax∆2-positive staining in nearly all Purkinje cells; one was mainly negative; and one had various levels of positive staining within the same sample. Further genetic analysis of the Purkinje cell layer, collected by microdissection from two subjects, showed that the samples contained G7 and G9 Bax microsatellite mutations. Both subjects were young and had no diseases reported at the time of death. As the distribution of Bax∆2 is consistent with that known for Baxα, but in a less ubiquitous manner, these results may imply a potential function of Bax∆2 in Purkinje cells.


Assuntos
Cerebelo/química , Proteína X Associada a bcl-2/análise , Adolescente , Adulto , Cerebelo/patologia , Feminino , Humanos , Masculino , Análise Serial de Tecidos , Adulto Jovem
12.
Biochem Biophys Res Commun ; 496(1): 18-24, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29291406

RESUMO

Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Inibidores de Proteassoma/administração & dosagem , Proteína X Associada a bcl-2/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Resultado do Tratamento
13.
Exp Cell Res ; 359(2): 342-355, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807790

RESUMO

Bax∆2 is a functional pro-apoptotic Bax isoform having alterations in its N-terminus, but sharing the rest of its sequence with Baxα. Bax∆2 is unable to target mitochondria due to the loss of helix α1. Instead, it forms cytosolic aggregates and activates caspase 8. However, the functional domain(s) responsible for BaxΔ2 behavior have remained elusive. Here we show that disruption of helix α1 makes Baxα mimic the behavior of Bax∆2. However, the other alterations in the Bax∆2 N-terminus have no significant impact on aggregation or cell death. We found that the hallmark BH3 domain is necessary but not sufficient for aggregation-mediated cell death. We also noted that the core region shared by Baxα and Bax∆2 is required for the formation of large aggregates, which is essential for BaxΔ2 cytotoxicity. However, aggregation by itself is unable to trigger cell death without the C-terminus. Interestingly, the C-terminal helical conformation, not its primary sequence, appears to be critical for caspase 8 recruitment and activation. As Bax∆2 shares core and C-terminal sequences with most Bax isoforms, our results not only reveal a structural basis for Bax∆2-induced cell death, but also imply an intrinsic potential for aggregate-mediated caspase 8-dependent cell death in other Bax family members.


Assuntos
Sequência de Aminoácidos , Caspase 8/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Deleção de Sequência , Proteína X Associada a bcl-2/química , Sítios de Ligação , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular , Clonagem Molecular , Expressão Gênica , Células HCT116 , Humanos , Modelos Moleculares , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
14.
Biochem Biophys Res Commun ; 483(1): 617-623, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-27998771

RESUMO

Ubiquitin-like protein Ubl4A is a small, multi-functional protein with no ubiquitination activity. We have previously demonstrated that Ubl4A directly interacts with actin-related protein 2/3 complex (Arp2/3) and promotes Arp2/3-dependent actin branching, thereby accelerating plasma membrane translocation of protein kinase Akt upon insulin stimulation. Here, we show that Ubl4A is critical for plasma membrane protrusion and cell migration. Ubl4A, F-actin and Arp2/3 are co-localized at the cell leading edges during wound closure. Knockout of Ubl4A significantly reduces actin-mediated membrane protrusion and delays wound healing by primary mouse embryonic fibroblasts. Consistently, the ability of fibroblasts to migrate out of corneal tissue ex vivo is also impaired in Ubl4A-deficient mice. Furthermore, cell motility, but not phagocytosis, is significantly decreased in Ubl4A-deficient macrophages compared with wild-type controls. These results imply an important role for Ubl4A in cell migration-associated pathophysiological processes.


Assuntos
Fibroblastos/citologia , Macrófagos/citologia , Ubiquitinas/deficiência , Ubiquitinas/genética , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Movimento Celular , Córnea/metabolismo , Feminino , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Pseudópodes/metabolismo , Cicatrização
15.
Proc Natl Acad Sci U S A ; 112(31): 9644-9, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195787

RESUMO

The serine-threonine kinase Akt is a key regulator of cell proliferation and survival, glucose metabolism, cell mobility, and tumorigenesis. Activation of Akt by extracellular stimuli such as insulin centers on the interaction of Akt with PIP3 on the plasma membrane, where it is subsequently phosphorylated and activated by upstream protein kinases. However, it is not known how Akt is recruited to the plasma membrane upon stimulation. Here we report that ubiquitin-like protein 4A (Ubl4A) plays a crucial role in insulin-induced Akt plasma membrane translocation. Ubl4A knockout newborn mice have defective Akt-dependent glycogen synthesis and increased neonatal mortality. Loss of Ubl4A results in the impairment of insulin-induced Akt translocation to the plasma membrane and activation. Akt binds actin-filaments and colocalizes with actin-related protein 2 and 3 (Arp2/3) complex in the membrane ruffles and lamellipodia. Ubl4A directly interacts with Arp2/3 to accelerate actin branching and networking, allowing Akt to be in close proximity to the plasma membrane for activation upon insulin stimulation. Our finding reveals a new mechanism by which Akt is recruited to the plasma membrane for activation, thereby providing a missing link in Akt signaling.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Membrana Celular/enzimologia , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinas/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Membrana Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Embrião de Mamíferos/citologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glicogênio/biossíntese , Proteínas de Fluorescência Verde/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Ubiquitinas/deficiência
16.
J Cell Sci Ther ; 6(Suppl 8)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29302381

RESUMO

Loss of the pro-apoptotic Bcl-2 family protein Bax occurs in ~50% of hereditary nonpolyposis colorectal cancer (HNPCC) due to microsatellite instability (MSI). Recently, we found that some of the "Bax-negative" MSI tumor cells contain a functional Bax isoform, BaxΔ2, which sensitizes cells to selective chemotherapeutics. Here we show the detection of Bax microsatellite mutations and expression of BaxΔ2 proteins in human buccal cells. Our study provides a sensitive and non-invasive approach and a potential clinical application in diagnosis and treatment of MSI colon cancer patients.

17.
Mol Cancer Res ; 12(9): 1225-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24842234

RESUMO

UNLABELLED: Loss of apoptotic Bax due to microsatellite mutation contributes to tumor development and chemoresistance. Recently, a Bax microsatellite mutation was uncovered in combination with a specific alternative splicing event that could generate a unique Bax isoform (BaxΔ2) in otherwise Bax-negative cells. Like the prototype Baxα, BaxΔ2 is a potent proapoptotic molecule. However, the proapoptotic mechanism and therapeutic implication of BaxΔ2 remain elusive. Here, the isolation and analysis of isogenic subcell lines are described that represent different Bax microsatellite statuses from colorectal cancer. Colon cancer cells harboring Bax microsatellite G7/G7 alleles are capable of producing low levels of endogenous BaxΔ2 transcripts and proteins. Interestingly, BaxΔ2-positive cells are selectively sensitive to a subgroup of chemotherapeutics compared with BaxΔ2-negative cells. Unlike other Bax isoforms, BaxΔ2 recruits caspase-8 into the proximity for activation, and the latter, in turn, activates caspase-3 and apoptosis independent of the mitochondrial pathway. These data suggest that the expression of BaxΔ2 may provide alternative apoptotic and chemotherapeutic advantages for Bax-negative tumors. IMPLICATIONS: "Bax-negative" colorectal tumors expressing a Bax isoform are sensitive to selective chemotherapeutics.


Assuntos
Apoptose/genética , Neoplasias Colorretais/genética , Isoformas de Proteínas/biossíntese , Proteína X Associada a bcl-2/biossíntese , Caspase 3/metabolismo , Caspase 8/biossíntese , Caspase 8/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Instabilidade de Microssatélites , Isoformas de Proteínas/genética , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA