Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
2.
J Am Chem Soc ; 145(31): 17389-17397, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494703

RESUMO

Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.

3.
Org Biomol Chem ; 20(31): 6183-6187, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35648392

RESUMO

Advancements in main-group catalysis are contingent on our ability to quantify effects that enhance reactivity in these systems. Herein we report the rates of alkylation for several substituted phosphines. We report that by incorporating a single pinacol boronic ester group in the ortho-position on triphenylphosphine, the rate of substitution with benzyl bromide is approximately 4.7 times faster than the parent compound as measured by initial rates. The corresponding meta- and para-isomers are only 1.3 and 1.5 times as fast, respectively. Using X-ray crystallographic data and quantum chemical calculations, we propose this rate acceleration occurs from an O to P electrostatic interaction that stabilizes the transition state.


Assuntos
Boro , Fosfinas , Alquilação , Estrutura Molecular , Fosfinas/química , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA