Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(34): 46764-46780, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33502712

RESUMO

Sampling, separation, detection, and characterization of microplastics (MPs) dispersed in natural water bodies and ecosystems is a challenging and critical issue for a better understanding of the hazards for the environment posed by such nearly ubiquitous and still largely unknown form of pollution. There is still the need for exhaustive, reliable, accurate, reasonably fast, and cost-efficient analytical protocols allowing the quantification not only of MPs but also of nanoplastics (NPs) and of the harmful molecular pollutants that may result from degrading plastics. Here a set of newly developed analytical protocols, integrated with specialized techniques such as pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), for the accurate and selective determination of the polymers most commonly found as MPs polluting marine and freshwater sediments are presented. In addition, the results of an investigation on the low molecular weight volatile organic compounds (VOCs) released upon photo-oxidative degradation of microplastics highlight the important role of photoinduced fragmentation at a molecular level both as a potential source of hazardous chemicals and as accelerators of the overall degradation of floating or stranded plastic debris.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Plásticos , Poluentes Químicos da Água/análise
2.
Chemosphere ; 270: 128612, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33127106

RESUMO

Pollution from microplastics (MPs) has become one of the most relevant topics in environmental chemistry. The risks related to MPs include their capability to adsorb toxic and harmful molecular species, and to release additives and degradation products into ecosystems. Their role as a primary source of a broad range of harmful volatile organic compounds (VOCs) has also been recently reported. In this work, we applied a non-destructive approach based on selected-ion flow tube mass spectrometry (SIFT-MS) for the characterization of VOCs released from a set of plastic debris collected from a sandy beach in northern Tuscany. The interpretation of the individual SIFT-MS spectra, aided by principal component data analysis, allowed us to relate the aged polymeric materials that make up the plastic debris (polyethylene, polypropylene, and polyethylene terephthalate) to their VOC emission profile, degradation level, and sampling site. The study proves the potential of SIFT-MS application in the field, as a major advance to obtain fast and reliable information on the VOCs emitted from microplastics. The possibility to obtain qualitative and quantitative data on plastic debris in less than 2 min also makes SIFT-MS a useful and innovative tool for future monitoring campaigns involving statistically significant sets of environmental samples.


Assuntos
Compostos Orgânicos Voláteis , Ecossistema , Monitoramento Ambiental , Espectrometria de Massas , Microplásticos , Plásticos
3.
J Hazard Mater ; 394: 122596, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32302919

RESUMO

Environmental pollution associated to plastic debris is gaining increasing relevance not only as a threat to ecosystems but also for its possible harmful effects on biota and human health. The release of toxic volatile organic compounds (VOCs) is a potential hazard associated with the environmental weathering of plastic debris. Artificial aging of reference polymers (polystyrene, polypropylene, polyethylene terephthalate, high and low density polyethylene) was performed in a Solar Box at 40 °C and 750 W/m2. The volatile degradation products were determined before and after 1, 2, 3 and 4 weeks of aging using a validated analytical procedure combining headspace (HS) with needle trap microextraction (NTME) and gas chromatography/mass spectrometry (GC-MS). A progressive increase in VOCs was observed during artificial photo-degradation, whose chemical profile resulted polymer-dependent and included carbonyls, lactones, esters, acids, alcohols, ethers, aromatics. The amount of extractable fraction in polar solvents generally showed a similar trend. The same analytical procedure was used to determine VOCs released from plastic debris collected at a marine beach. All samples released harmful compounds (e.g. acrolein, benzene, propanal, methyl vinyl ketone, and methyl propenyl ketone), supporting the initial hypothesis that microplastics represent an unrecognized source of environmental pollution.

4.
Mar Pollut Bull ; 136: 269-275, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30509807

RESUMO

Microplastics generated by plastics waste degradation are ubiquitous in marine and freshwater basins, posing serious environmental concerns. Raman and FTIR spectroscopies, along with techniques such as pyrolysis-GC/MS, are typically used for their identification. We present a procedure based on gel permeation chromatography (GPC) coupled with fluorescence detection for semi-quantitative selective determination of the most common microplastics found in marine shoreline sediments: poly(styrene) (PS) and partially degraded polyolefins (LDPEox). By operating the detector at either 260/280 or 370/420 nm excitation/emission wavelengths PS can be distinguished from LDPEox upon GPC separation. Semi-quantitative determination of microplastics contents is also possible: dichloromethane extracts of PS and LDPEox yield linear plots of fluorescence peak area vs concentration (0-5.0 mg/mL range) and were used as reference materials for quantification of the microplastics content in sand samples collected in the winter berm and dune sectors of a Tuscany beach in Italy.


Assuntos
Cromatografia em Gel/métodos , Sedimentos Geológicos/análise , Polienos/análise , Poliestirenos/análise , Poluentes Químicos da Água/análise , Praias , Itália , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA