Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33846-33854, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899405

RESUMO

Exploring a convenient, scalable, yet effective broadband electromagnetic wave absorber (EMA) in the gigahertz (GHz) region is of high interest today to quench its expanding demand. Ni-Zn ferrite is considered as a potential EMA; however, their performance study as a scalable effective millimeter-length absorber is still limited. Herein, we investigated EM wave attenuation properties of Ni0.5Zn0.5Fe2O4 (NZF) samples substituting Mn ion in place of Fe3+ as well as Zn2+ within a widely used frequency range of 0.1-9 GHz. Through composition optimization, Ni0.5Zn0.4Mn0.1Fe2O4 (NZM0.1F) EMA demonstrates excellent microwave absorption performance accompanied by simultaneous maximum reflection loss (RL) of -50.2 dB and wide BW of 6.8 GHz (with RL < -10 dB, i.e., attenuation >90%) at an optimum thickness of 6 mm. Moreover, the attenuation constant significantly increases from ∼217 to 301 Np/m with Mn doping. The key contribution arises from magnetic-dielectric properties synergy along with enhanced dielectric and magnetic losses owing to cation chemistry and site occupation in spinel NZF. In addition, porosity is induced in the system by a controlled two-step heat treatment process that promotes total loss with multiple internal reflections of the EM wave. Furthermore, RL is simulated by varying incident EM wave angles for the NZM0.1F sample displaying its angle insensitivity up to 50°. Our results reveal NZM0.1F as a futuristic environment-friendly microwave absorber material that is suitable for practical high-frequency applications.

2.
Nanotechnology ; 32(34)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34086606

RESUMO

Ferrite nano-hollow spheres (NHS) are of great significance to improve electromagnetic (EM) wave absorption performance. Herein, the deposition of dielectric SiO2and ferrimagnetic CoFe2O4(CFO) layers on MnFe2O4(MnFO) NHS are found as an effective strategy to enhance EM wave attenuation. EM wave absorption properties of as-synthesized bare and bi-layered samples are investigated within a widely-used frequency range of 1-17 GHz. MnFO@CFO bi-layered NHSs exhibit an excellent reflection loss (RL) of -47.0 dB at only 20 wt% filler content with an effective broad bandwidth (BW) of ∼2.2 GHz (frequency region for RL < -10 dB). The attenuation constant is observed to increase from 191.6 Np m-1to 457.8 Np m-1for bare MnFO and MnFO@CFO NHSs respectively. Larger interfacial area, additional pairs of dipole, higher magnetic anisotropy, internal reflections and scattering from NHSs are responsible for superior absorption properties of MnFO@CFO NHSs. Moreover, the best impedance matching,∣Zin/Z0∣ âˆ¼ 1, promotes the optimum RL in MnFO@CFO at 5.96 GHz. MnFO@SiO2bi-layered NHSs result in a sufficiently high RL âˆ¼ -30.0 dB with a composite absorber of a thickness of only 3 mm. Analysis from theλ/4 model for best matching thickness (tm) displays a good agreement between experimental and simulatedtmvalues. This study demonstrates optimized MnFO@CFO NHS as a highly promising low-cost and lightweight EM wave absorber suitable for practical high-frequency applications.

3.
Nanotechnology ; 31(47): 475403, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32886646

RESUMO

Poor light absorption, severe surface charge recombination and fast degradation are the key challenges with ZnO nanostructures based electrodes for photoelectrochemical (PEC) water splitting. Here, this study attempts to design an efficient and durable nano-heterojunction photoelectrode by integrating earth abundant chemically stable transition metal spinel ferrites MFe2O4 (M = Co and Ni) nano-particles on ZnO Nanorod arrays. The low band gap magnetic ferrites improve the solar energy harvesting ability of the nano-heterojunction electrodes in ultraviolet-visible light region resulting in a maximum increase of 105% and 190% in photocurrent density and applied bias photon-to-current efficiency, respectively, compared to pristine ZnO nanorods. The favourable type-II band alignment at the ferrites/ZnO nano-heterojunction provides significantly enhanced photo-generated carrier separation and transfer, endowing the excellent solar H2 evolution ability (743 and 891 µmol cm-2 h-1for ZnO/CoFe2O4 and ZnO/NiFe2O4, respectively) of the photoanodes by using sacrificial agent. The hybrid nanostructures deliver long term stability of the electrode against photocorrosion. This work demonstrates an easy but effective strategy to develop low-cost earth abundant ferrites-based heterojunction electrodes, which offers excellent PEC activity and stability.

4.
Phys Chem Chem Phys ; 21(20): 10726-10737, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086920

RESUMO

The emerging category of magneto-fluorescent tartrate-modified MnFe2O4 nano hollow spheres (T-MnFe2O4 NHSs) can be considered as promising candidates for biomedical applications. The interaction of bovine serum albumin (BSA) with T-MnFe2O4 NHSs has been studied using several spectroscopic techniques, which suggest that the interaction occurs by an electrostatic mechanism. Furthermore, BSA enhances the charge transfer transition from the tartrate ligand to the metal ions along with the d-d transition of Fe3+ ions on NHSs surfaces at different pH. Very strong salt bridge formation occurs between the lysine of the BSA surface and the tartrate in basic medium (pH 10), followed by the acidic (pH 3) and neutral medium (pH 7), respectively. Systematic fluorescence microscopic analysis reveals that BSA significantly enhances the contrast of T-MnFe2O4 NHSs in UV and blue light excitation because of the extended charge transfer from BSA to T-MnFe2O4 NHSs. Our report demonstrates great potential in the field of nanotechnology and biomedical applications. In vitro toxicity analysis using RAW 264.7 celline and in vivo studies on Wister rats revealed that the T-MnFe2O4 NHSs are benign. Furthermore, T-MnFe2O4 NHSs also appear to be an antimicrobial agent. Therefore, T-MnFe2O4 NHSs can be explored for future therapeutic applications.


Assuntos
Compostos Férricos/química , Compostos de Manganês/química , Nanosferas/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Tartaratos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/toxicidade , Fluorescência , Camundongos , Nanosferas/toxicidade , Células RAW 264.7 , Ratos
5.
Int J Biol Macromol ; 112: 818-830, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29421493

RESUMO

Liver cancer is a leading cause of death related to cancer worldwide. Poly(d-l-lactide-co-glycolide) (PLGA) nanoparticles provide prolonged blood residence time and sustained drug release, desirable for cancer treatment. To achieve this, we have developed paclitaxel-loaded PLGA nanoparticles by emulsification solvent evaporation method and evaluated by in vitro and in vivo studies. The results obtained from in vitro study showed that drug loading efficiency was 84.25% with an initial burst release followed by sustained drug release. Cellular uptake and in vitro cytotoxicity of the formulated nanoparticles using HepG2, Huh-7 cancer cells and Chang liver cells were also investigated. The formulated nanoparticles showed more cytotoxic effect at lower concentration and were internalized well by HepG2 cells compared to free-drug and marketed formulation. Prolonged half-life and higher plasma and liver drug concentrations of the formulated nanoparticles were observed as compared to free drug and marketed formulation in rats. Thus, paclitaxel-loaded polymeric nanoparticle has shown its potential for the treatment of liver cancer.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Fígado/metabolismo , Nanopartículas/química , Paclitaxel/farmacocinética , Ácido Poliglicólico/química , Animais , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Células Hep G2 , Humanos , Hidrólise , Cinética , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Nanopartículas/ultraestrutura , Paclitaxel/administração & dosagem , Paclitaxel/sangue , Paclitaxel/farmacologia , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Distribuição Tecidual/efeitos dos fármacos
6.
Drug Deliv ; 24(1): 346-357, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28165821

RESUMO

Docetaxel (DTX) is found to be very effective against glioma cell in vitro. However, in vivo passage of DTX through BBB is extremely difficult due to the physicochemical and pharmacological characteristics of the drug. No existing formulation is successful in this aspect. Hence, in this study, effort was made to send DTX through blood-brain barrier (BBB) to brain to treat diseases such as solid tumor of brain (glioma) by developing DTX-loaded nanoliposomes. Primarily drug-excipients interaction was evaluated by FTIR spectroscopy. The DTX-loaded nanoliposomes (L-DTX) were prepared by lipid layer hydration technique and characterized physicochemically. In vitro cellular uptake in C6 glioma cells was investigated. FTIR data show that the selected drug and excipients were chemically compatible. The unilamellar vesicle size was less than 50 nm with smooth surface. Drug released slowly from L-DTX in vitro in a sustained manner. The pharmacokinetic data shows more extended action of DTX from L-DTX in experimental rats than the free-drug and Taxotere®. DTX from L-DTX enhanced 100% drug concentration in brain as compared with Taxotere® in 4 h. Thus, nanoliposomes as vehicle may be an encouraging strategy to treat glioma with DTX.


Assuntos
Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Taxoides/administração & dosagem , Taxoides/metabolismo , Administração Intravenosa , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Docetaxel , Lipossomos , Masculino , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Taxoides/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA