Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cureus ; 16(4): e58608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765401

RESUMO

Uveitis is the inflammation of the uveal tract (i.e., iris, ciliary body, and choroid). Uveitis is categorized into the following three types based on the anatomical location of inflammation: anterior, intermediate, and posterior uveitis. Severe cases may lead to panuveitis, where all three layers may become inflamed potentially resulting in permanent vision loss. Uveitis can arise from different underlying disorders, including infectious causes or autoimmune disorders. Syphilis and Lyme disease are uncommon causes of uveitis. Eye involvement can occur at any stage in Lyme disease, characterized by diverse manifestations such as conjunctivitis, episcleritis, keratitis, uveitis, neuroretinitis, and retinal vasculitis. Patients may present with symptoms of blurred vision, eye pain or discomfort, visual floaters, headache, or intolerance to light. Patients can risk vision loss if not diagnosed and treated promptly.

2.
Gene ; 897: 148081, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101713

RESUMO

Azadiradione is a small bioactive limonoid found in the seed of Azadirachta Indica, an Indian medicinal plant commonly known as Neem. Recently, it has been shown to ameliorate the disease pathology in fly and mouse model of Huntington's disease by restoring impaired proteostasis. Here we report that the azadiradione could be involved in modulating the synaptic function through increased expression of Ube3a, a dual function protein having ubiquitin ligase and co-activator functions and associated with Angelman syndrome and autism. Treatment of azadiradione to HT22 hippocampal cell line and in adult mice induced the expression of Ube3a as well as two important synaptic function and plasticity regulating proteins, parvalbumin and brain-derived neurotropic factor (BDNF). Interestingly, another synaptic plasticity modulating protein Arc (activity-regulated cytoskeletal associated protein) was down-regulated by azadiradione. Partial knockdown of Ube3a in HT22 cell abrogated azadiradione induced expression of parvalbumin and BDNF. Ube3a-maternal deficient mice also exhibited significantly decreased expression of parvalbumin and BDNF in their brain and treatment of azadiradione in these animals did not rescue the altered expression of either parvalbumin or BDNF. These results indicate that azadiradione-induced expression of parvalbumin and BDNF in the brain is mediated through Ube3a and suggest that azadiradione could be implicated in restoring synaptic dysfunction in many neuropsychiatric/neurodegenerative disorders.


Assuntos
Síndrome de Angelman , Limoninas , Camundongos , Animais , Limoninas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Parvalbuminas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Encéfalo/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Modelos Animais de Doenças
3.
J Mol Graph Model ; 126: 108640, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801809

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemic state. The α-glucosidase and α-amylase are considered two major targets for the management of Type 2 DM due to their ability of metabolizing carbohydrates into simpler sugars. In the current study, cheminformatics analyses were performed to develop validated and predictive models with a dataset of 187 α-glucosidase and α-amylase dual inhibitors. Separate linear, interpretable and statistically robust 2D-QSAR models were constructed with datasets containing the activities of α-glucosidase and α-amylase inhibitors with an aim to explain the crucial structural and physicochemical attributes responsible for higher activity towards these targets. Consequently, some descriptors of the models pointed out the importance of specific structural moieties responsible for the higher activities for these targets and on the other hand, properties such as ionization potential and mass of the compounds as well as number of hydrogen bond donors in molecules were found to be crucial in determining the binding potentials of the dataset compounds. Statistically significant 3D-QSAR models were developed with both α-glucosidase and α-amylase inhibition datapoints to estimate the importance of 3D electrostatic and steric fields for improved potentials towards these two targets. Molecular docking performed with selected compounds with homology model of α-glucosidase and X-ray crystal structure of α-amylase largely supported the interpretations obtained from the cheminformatic analyses. The current investigation should serve as important guidelines for the design of future α-glucosidase and α-amylase inhibitors. Besides, the current investigation is entirely performed by using non-commercial open-access tools to ensure easy accessibility and reproducibility of the investigation which may help researchers throughout the world to work more on drug design and discovery.


Assuntos
Inibidores Enzimáticos , Hipoglicemiantes , alfa-Glucosidases , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/administração & dosagem , alfa-Glucosidases/química , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
4.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687207

RESUMO

Human soluble epoxide hydrolase (sEH), a dual-functioning homodimeric enzyme with hydrolase and phosphatase activities, is known for its pivotal role in the hydrolysis of epoxyeicosatrienoic acids. Inhibitors targeting sEH have shown promising potential in the treatment of various life-threatening diseases. In this study, we employed a range of in silico modeling approaches to investigate a diverse dataset of structurally distinct sEH inhibitors. Our primary aim was to develop predictive and validated models while gaining insights into the structural requirements necessary for achieving higher inhibitory potential. To accomplish this, we initially calculated molecular descriptors using nine different descriptor-calculating tools, coupled with stochastic and non-stochastic feature selection strategies, to identify the most statistically significant linear 2D-QSAR model. The resulting model highlighted the critical roles played by topological characteristics, 2D pharmacophore features, and specific physicochemical properties in enhancing inhibitory potential. In addition to conventional 2D-QSAR modeling, we implemented the Transformer-CNN methodology to develop QSAR models, enabling us to obtain structural interpretations based on the Layer-wise Relevance Propagation (LRP) algorithm. Moreover, a comprehensive 3D-QSAR analysis provided additional insights into the structural requirements of these compounds as potent sEH inhibitors. To validate the findings from the QSAR modeling studies, we performed molecular dynamics (MD) simulations using selected compounds from the dataset. The simulation results offered crucial insights into receptor-ligand interactions, supporting the predictions obtained from the QSAR models. Collectively, our work serves as an essential guideline for the rational design of novel sEH inhibitors with enhanced therapeutic potential. Importantly, all the in silico studies were performed using open-access tools to ensure reproducibility and accessibility.


Assuntos
Epóxido Hidrolases , Simulação de Dinâmica Molecular , Humanos , Reprodutibilidade dos Testes , Fontes de Energia Elétrica , Hidrolases
5.
Comput Biol Med ; 157: 106789, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963353

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a pathological condition which is strongly correlated with fat accumulation in the liver that has become a major health hazard globally. So far, limited treatment options are available for the management of NAFLD and partial agonism of Farnesoid X receptor (FXR) has proven to be one of the most promising strategies for treatment of NAFLD. In present work, a range of validated predictive cheminformatics and molecular modeling studies were performed with a series of 3-benzamidobenzoic acid derivatives in order to recognize their structural requirements for possessing higher potency towards FXR. 2D-QSAR models were able to extract the most significant structural attributes determining the higher activity towards the receptor. Ligand-based pharmacophore model was created with a novel and less-explored open access tool named QPhAR to acquire information regarding important 3D-pharmacophoric features that lead to higher agonistic potential towards the FXR. The alignment of the dataset compounds based on pharmacophore mapping led to 3D-QSAR models that pointed out the most crucial steric and electrostatic influence. Molecular dynamics (MD) simulation performed with the most potent and the least potent derivatives of the current dataset helped us to understand how to link the structural interpretations obtained from 2D-QSAR, 3D-QSAR and pharmacophore models with the involvement of specific amino acid residues in the FXR protein. The current study revealed that hydrogen bond interactions with carboxylate group of the ligands play an important role in the ligand receptor binding but higher stabilization of different helices close to the binding site of FXR (e.g., H5, H6 and H8) through aromatic scaffolds of the ligands should lead to higher activity for these ligands. The present work affords important guidelines towards designing novel FXR partial agonists for new therapeutic options in the management of NAFLD. Moreover, we relied mainly on open-access tools to develop the in-silico models in order to ensure their reproducibility as well as utilization.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo
6.
Genes (Basel) ; 14(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36833259

RESUMO

(1) Background: To assess the genetic makeup among the agro-economically important members of Euphorbiaceae, the present study was conducted to identify and characterize high-quality single-nucleotide polymorphism (SNP) markers and their comparative distribution in exonic and intronic regions from the publicly available expressed sequence tags (ESTs). (2) Methods: Quality sequences obtained after pre-processing by an EG assembler were assembled into contigs using the CAP3 program at 95% identity; the mining of SNP was performed by QualitySNP; GENSCAN (standalone) was used for detecting the distribution of SNPs in the exonic and intronic regions. (3) Results: A total of 25,432 potential SNPs (pSNP) and 14,351 high-quality SNPs (qSNP), including 2276 indels, were detected from 260,479 EST sequences. The ratio of quality SNP to potential SNP ranged from 0.22 to 0.75. A higher frequency of transitions and transversions was observed more in the exonic than the intronic region, while indels were present more in the intronic region. C↔T (transition) was the most dominant nucleotide substitution, while in transversion, A↔T was the dominant nucleotide substitution, and in indel, A/- was dominant. (4) Conclusions: Detected SNP markers may be useful for linkage mapping; marker-assisted breeding; studying genetic diversity; mapping important phenotypic traits, such as adaptation or oil production; or disease resistance by targeting and screening mutations in important genes.


Assuntos
Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Nucleotídeos
7.
Environ Sci Pollut Res Int ; 30(18): 52182-52208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826772

RESUMO

In this article, we present the synthesis of Piper longum leaves-derived ethanolic carbon dots (PLECDs) using the most simplistic environmentally friendly solvothermal carbonization method. The PLECDs fluoresced pink color with maximum emission at 670 nm at 397 nm excitation. Additionally, the dried PLECDs dissolved in water showed green fluorescence with higher emission at 452 nm at 370 nm excitation. The UV spectra showed peaks in the UV region (271.25 nm and 320.79 nm) and a noticeable tail in the visible region, signifying the efficient synthesis of nano-sized carbon particles and the Mie scattering effect. Various functional groups (-OH, -N-H, -C-H, -C = C, -C-N, and -C-O) were identified using Fourier transform infrared spectroscopy (FTIR). Its nanocrystalline property was revealed by the sharp peaks in the X-ray diffraction (XRD). High-resolution transmission electron microscopy (HRTEM) photomicrograph displayed a roughly spherical structure with a mean size of 2.835 nm. The energy dispersive X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) revealed the elemental abundance of C, O, and N. The high-performance thin-layer chromatography (HPTLC) fingerprint of PLECDs showed an altered pattern than its precursor (Piper longum leaves ethanolic extract or PLLEE). The PLECDs sensed Cu2+ selectively with a limit of detection (LOD) and limit of quantification (LOQ) of 0.063 µM and 0.193 µM, respectively. It showed excellent cytotoxicity toward MDA-MB-231 (human breast cancer), SiHa (human cervical carcinoma), and B16F10 (murine melanoma) cell lines with excellent in vitro bioimaging outcomes. It also has free radical scavenging activity. The PLECDs also showed outstanding bacterial biocompatibility, pH-dependent fluorescence stability, photostability, physicochemical stability, and thermal stability.


Assuntos
Piper , Pontos Quânticos , Animais , Humanos , Camundongos , Carbono/química , Espectroscopia Fotoeletrônica , Linhagem Celular , Corantes Fluorescentes/química , Pontos Quânticos/química
9.
Adv Exp Med Biol ; 1391: 137-159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472821

RESUMO

Infertility is a universal health problem affecting 15% of couples, out of which 20-30% cases are due to male infertility. The leading causes of male infertility include hormonal defects, physical reasons, sexual problems, hazardous environment, stressful lifestyle, genetic factors, epigenetic factors, and oxidative stress. Various physiological functions involve reactive oxygen species (ROS) and nitrogen species at appropriate levels for proper smooth functioning. ROS control critical reproductive processes such as capacitation, acrosomal reaction, hyperactivation, egg penetration, and sperm head decondensation. The excessive free radicals or imbalance between ROS and endogenous antioxidant enzymes damages sperm membrane by inducing lipid peroxidation causing mitochondrial dysfunction and DNA damage that eventually lead to male infertility. Numerous synthetic products are available in the market to treat infertility problems, largely ending in side effects and repressing symptoms. Ayurveda contains a particular group of Rasayana herbs, called vajikarana, that deals with nourishment and stimulation of sexual tissues, improves male reproductive vitality, and deals with oxidative stress via antioxidant mechanism. The present study aims to describe oxidative stress and the role of herbal drugs in treating male infertility.


Assuntos
Infertilidade Masculina , Sêmen , Masculino , Humanos , Ayurveda , Epigenômica , Infertilidade Masculina/tratamento farmacológico , Estresse Oxidativo
10.
Adv Exp Med Biol ; 1391: 181-199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472823

RESUMO

Proper regulation of cellular protein quality control is crucial for cellular health. It appears that the protein quality control machinery is subjected to distinct regulation in different cellular contexts such as in somatic cells and in germ cells. Heat shock factors (HSFs) play critical role in the control of quality of cellular proteins through controlling expression of many genes encoding different proteins including those for inducible protein chaperones. Mammalian cells exert distinct mechanism of cellular functions through maintenance of tissue-specific HSFs. Here, we have discussed different HSFs and their functions including those during spermatogenesis. We have also discussed the different heat shock proteins induced by the HSFs and their activities in those contexts. We have also identified several small molecule activators and inhibitors of HSFs from different sources reported so far.


Assuntos
Resposta ao Choque Térmico
12.
Expert Rev Vaccines ; 21(8): 1071-1086, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604776

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED: Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION: We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.


Assuntos
COVID-19 , Proteínas Virais de Fusão , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Nucleoproteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
13.
J Ethnopharmacol ; 292: 115178, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35278608

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Renal disease is a significant public health concern that affects people all over the world. The main limitations of conventional therapy are the adverse reaction on human health and the expensive cost of drugs. Indeed, it is necessary to develop new therapeutic strategies that are less expensive and have fewer side effects. As a consequence of their natural compounds, medicinal plants can be used as an alternative therapy to cure various ailments including kidney diseases. OBJECTIVE: of the study: This review paper has two principal goals: (1) to inventory and describe the plants and their ancestral use by Moroccan society to cure renal problems, (2) to link traditional use with scientific confirmations (preclinical and clinical). METHODS: To analyze pharmacological effects, phytochemical, and clinical trials of plants, selected for renal therapy, a bibliographical search was undertaken by examining ethnobotanical investigations conducted in Morocco between 1991 and 2019 and consulting peer-reviewed papers from all over the world. RESULTS: Approximately 290 plant species, spanning 81 families and 218 genera have been reported as being utilized by Moroccans to manage renal illness. The most frequently mentioned species in Morocco were Herniaria hirsuta subsp. cinerea (DC.), Petroselinum crispum (Mill.) Fuss and Rosmarinus officinalis L. The leaves were the most frequently used plant parts, followed by the whole plant. Decoction and infusion were the most popular methods of preparation. A record of 71 plant species was studied in vitro and/or in vivo for their therapeutic efficacy against kidney disorders, including 10 plants attempting to make it to the clinical stage. Twenty compounds obtained from 15 plants have been studied for the treatment of kidney diseases. CONCLUSION: Medicinal herbs could be a credible alternative therapy for renal illness. However, additional controlled trials are required to confirm their efficiency in patients with kidney failure. Overall, this work could be used as a database for future exploration.


Assuntos
Plantas Medicinais , Insuficiência Renal , Etnobotânica , Etnofarmacologia , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Masculino , Medicina Tradicional/métodos , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Plantas Medicinais/química
14.
J Biomol Struct Dyn ; 40(15): 6921-6938, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33682632

RESUMO

COVID-19 caused by a positive-sense single stranded RNA virus named as severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) triggered the global pandemic. This virus has infected about 10.37 Crores and taken lives of 2.24 Crores people of 213 countries to date. To cope-up this emergency clinical trials are undergoing with some existing drugs like remdesivir, flavipiravir, lopinavir-ritonavir, nafamostat, doxycycline, hydroxy-chloroquine, dexamethasone, etc., despite their severe toxicity and health hazards among diabetics, hypertensive, cardiac patients or normal individuals. The lack of safe and approved treatment for COVID-19 has forced the scientific community to find novel and safe compounds with potential efficacy. This study evaluates a few selective herbal compounds like glucoraphanin, vitexin, niazinin, etc., as a potential inhibitor of the spike protein and 3-chymotrypsin-like protease (3CLpro) or main protease (Mpro) of SARS-COV-2 through in-silico virtual studies such as molecular docking, target analysis, toxicity prediction and ADME prediction and supported by a Molecular-Dynamic simulation. Selective phytocompounds were docked successfully in the binding site of spike glycoprotein and 3CLpro (Mpro) of SARS-CoV-2. In-silico approaches also predict this molecule to have good solubility, pharmacodynamic property and target accuracy through MD simulation and ADME studies. These hit molecules niazinin, vitexin, glucoraphanin also obey Lipinski's rule along with their stable binding towards target protein of the virus, which makes them suitable for further biochemical and cell-based assays followed by clinical investigations to highlight their potential use in COVID-19 treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases
15.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34592338

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Tabernaemontana/química , Proteínas Quinases Ativadas por AMP/metabolismo , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Antioxidants (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439453

RESUMO

Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative properties in the reduction of oxidative stress and inflammatory reactions. This evidence-based review focuses on the protective role of p-CA including its therapeutic potential. p-CA and its conjugates possesses various bioactivities such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-melanogenic properties. Due to its potent free radical scavenging activity, it can mitigate the ill effects of various diseases including arthritis, neurological disorders, and cardio-vascular diseases. Recent studies have revealed that p-CA can ameliorate the harmful effects associated with oxidative stress in the reproductive system, also by inhibiting enzymes linked with erectile function.

17.
Biochim Biophys Acta Gen Subj ; 1865(6): 129885, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33639218

RESUMO

BACKGROUND: Heat shock response (HSR), a component of cellular protein quality control mechanisms, is defective in different neurodegenerative conditions such as Parkinson's disease (PD). Forced upregulation of heat shock factor 1 (HSF1), an HSR master regulator, showed therapeutic promise in PD models. Many of the reported small-molecule HSF1 activators have limited functions. Therefore, identification and understanding the molecular bases of action of new HSF1 activating molecules is necessary. METHOD: We used a cell-based reporter system to screen Andrographis paniculata leaf extract to isolate andrographolide as an inducer of HSF1 activity. The andrographolide activity was characterized by analyzing its role in different protein quality control mechanisms. RESULT: We find that besides ameliorating the PD in MPTP-treated mice, andrographolide upregulated different machineries controlled by HSF1 and NRF2 in both cell and mouse brain. Andrographolide achieves these functions through mTORC1 activated via p38 MAPK and ERK pathways. NRF2 activation is reflected in the upregulation of proteasome as well as autophagy pathways. We further show that NRF2 activation is mediated through mTORC1 driven phosphorylation of p62/sequestosome 1. Studies with different cell types suggested that andrographolide-mediated induction of ROS level underlies all these activities in agreement with the upregulation of mTORC1 and NRF2-antioxidant pathway in mice. CONCLUSION: Andrographolide through upregulating HSF1 activity ameliorates protein aggregation induced cellular toxicity. GENERAL SIGNIFICANCE: Our results provide a reasonable basis for use of andrographolide in the therapy regimen for the treatment of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Doença de Parkinson/prevenção & controle , Animais , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurotoxinas/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Tradit Complement Med ; 9(2): 106-118, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30963045

RESUMO

Diospyros melanoxylon Roxb. (D. melanoxylon) belongs to the family Ebenaceae and its leaves are very well known for making beedi throughout the World. The current study estimated the comparative extraction technique and its in-vitro antidiabetic prospective of the leaves of D. melanoxylon. Qualitative phytochemicals analysis of the samples from D. melanoxylon was carried out for the detection of secondary metabolites. Total phenolics, flavonoids, triterpenoids and tannins content of D. melanoxylon were estimated using colorimetric assay. Microwave-assisted extraction (MAE) technique with a low carbon output was observed for the speedy extraction of bioactive compounds obtained from Diospyros melanoxylon leaf extract. MAE produced a maximum yield of bioactive compounds which was found to be more efficient than ultrasound, soxhlet and maceration extraction. Qualitative HPLC analysis was performed for bioactive compounds. The in-vitro antidiabetic assay was performed using α-amylase and α-glucosidase inhibitory activity. In conclusion, the fractions exhibited the concentration-dependent inhibitory effect with significant (P < 0.0001) result. So the above performance might be accountable for the antidiabetic activity of D. Melanoxylon leaf extract due to presence of bioactive compounds.

19.
Steroids ; 139: 18-27, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30217788

RESUMO

Ichnocarpus frutescens, a climber plant, is distributed all over India. As its different parts are used as anti-inflammatory agent, so we re-investigated the roots to isolate compounds and evaluate its biological efficacy. Also, in-silico molecular docking was carried out to elucidate the structure activity relationship (SAR) of isolated compounds toward identifies the drug target enzyme with validation, which was further supported by anti-inflammatory in-vitro and in-vivo experimental models. The compounds have been undertaken mainly to investigate the anti-inflammatory and analgesic efficacy along with molecular docking investigation followed by anti-proteinase, anti-denaturation and cyclooxygenase (COX) inhibition studies. Inflammatory cytokines like TNF-α and IL-6 were assayed from lipopolysaccharides (LPS) and Concavallin (CON A) stimulated human PBMC derived macrophages by Enyme linked immune sorbent assay (ELISA) method. The purity index of the lead compound was determined by HPLC. The compounds were illustrated as 2-hydroxy tricosanoic acid (1), stigmasterol glucoside (2), stigmasterol (3), ß-sitosterol (4) and ß-sitosterol glucoside (5). The test molecules showed significant anti-denaturation, anti-proteinase and analgesic effect validated with docking study. Compounds exhibited anti-inflammatory and pain killing action due to dexamethasone like phytosterol property. Promising anti-denaturation and anti-proteinase activity offered by the compound 5, may hold its promise to fight against arthritis by rejuvenating the osteoblast cells and destroying the bone-resorpting complex of hydrated protein, bone minerals by secreting the acid and an enzyme collagenase along with pain management. The lead bioactive compound i.e. ß-sitosterol glucoside (compound 5) demonstrated considerable anti-inflammatory activity showing more than 90% protection against the inflammatory cytokines at 50 µM dose. The anti-denaturation and COX-2 inhibition shown by the compound 5 was also noteworthy with the significant IC50 (ranging from 0.25 to 2.56 µM) that also supporting its future promise for developing as anti-inflammatory agent. Since the most bio-active compound (5) elicit promising acute anti-inflammatory action and peripheral anti-nociceptive pain killing action with a significant ED50 dose of 3.95 & 2.84 mg/kg i.p. respectively in the in-vivo animal model. It could suggest its potentiality as a good in-vivo bio available agent to be an emerging anti-inflammatory drug regimen scaffold in the future. It also establishes significant in-vitro and in-vivo result co-relation. Therefore, the compound 5 could be believed as a potent lead for designing anti-inflammatory, anti-arthritic drug or pain killer without showing any untoward effect.


Assuntos
Apocynaceae/química , Inflamação/tratamento farmacológico , Dor Nociceptiva/tratamento farmacológico , Esteroides/administração & dosagem , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Glucosídeos/química , Glucosídeos/isolamento & purificação , Humanos , Inflamação/patologia , Interleucina-6/genética , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Dor Nociceptiva/patologia , Percepção da Dor/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Sitosteroides/química , Sitosteroides/isolamento & purificação , Esteroides/química , Esteroides/isolamento & purificação , Estigmasterol/análogos & derivados , Estigmasterol/química , Estigmasterol/isolamento & purificação , Fator de Necrose Tumoral alfa/genética
20.
Mol Neurobiol ; 55(8): 6337-6346, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29294248

RESUMO

Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by expansion of CAG repeats in the coding area of huntingtin gene. In the HD brain, mutant huntingtin protein goes through proteolysis, and its amino-terminal portion consisting of polyglutamine repeats accumulate as inclusions that result in progressive impairment of cellular protein quality control system. Here, we demonstrate that partial rescue of the defective protein quality control in HD model mouse by azadiradione (a bioactive limonoids found in the seed of Azadirachta indica) could potentially improve the disease pathology. Prolonged treatment of azadiradione to HD mice significantly improved the progressive deterioration in body weight, motor functioning along with extension of lifespan. Azadiradione-treated HD mice brain also exhibited considerable decrease in mutant huntingtin aggregates load and improvement of striatal pathology in comparison with age-matched saline-treated HD controls. Biochemical analysis further revealed upregulation and activation of not only HSF1 (master regulator of protein folding) but also Ube3a (an ubiquitin ligase involved in the clearance of mutant huntingtin) in azadiradione-treated mice. Our results indicate that azadiradione-mediated enhanced folding and clearance of mutant huntingtin might underlie improved disease pathology in HD mice and suggests that it could be a potential therapeutic molecule to delay the progression of HD.


Assuntos
Progressão da Doença , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/patologia , Limoninas/uso terapêutico , Animais , Atrofia , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Doença de Huntington/fisiopatologia , Limoninas/administração & dosagem , Limoninas/farmacologia , Longevidade , Camundongos Transgênicos , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Neostriado/fisiopatologia , Agregados Proteicos/efeitos dos fármacos , Controle de Qualidade , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA