Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 712-713: 149907, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636303

RESUMO

Over the past decades, cancer stem cells (CSCs) have emerged as a critical subset of tumor cells associated with tumor recurrence and resistance to chemotherapy. Understanding the mechanisms underlying CSC-mediated chemoresistance is imperative for improving cancer therapy outcomes. This study delves into the regulatory role of NEIL1, a DNA glycosylase, in chemoresistance in ovarian CSCs. We first observed a decreased expression of NEIL1 in ovarian CSCs, suggesting its potential involvement in CSC regulation. Using pan-cancer analysis, we confirmed the diminished NEIL1 expression in ovarian tumors compared to normal tissues. Furthermore, NEIL1 downregulation correlated with an increase in stemness markers and enrichment of CSCs, highlighting its role in modulating CSC phenotype. Further mechanistic investigation revealed an inverse correlation between NEIL1 and RAD18 expression in ovarian CSCs. NEIL1 depletion led to heightened RAD18 expression, promoting chemoresistance possibly via enhancing Translesion DNA Synthesis (TLS)-mediated DNA lesion bypass. Moreover, dowregulation of NEIL1 results in reduced DNA damage accumulation and suppressed apoptosis in ovarian cancer. Overall, our findings unveil a novel mechanism involving NEIL1 and RAD18 in regulating chemoresistance in ovarian CSCs. Targeting this NEIL1-RAD18 axis may offer promising therapeutic strategies for combating chemoresistance and improving ovarian cancer treatment outcomes.


Assuntos
DNA Glicosilases , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Regulação para Cima , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Dano ao DNA , Apoptose/efeitos dos fármacos , Apoptose/genética
2.
J Cell Physiol ; 236(6): 4106-4120, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33184862

RESUMO

In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance. Cancer cells utilize multiple lines of self-defense mechanisms to bypass chemotherapy and radiotherapy. One such mechanism employed by cancer cells is translesion DNA synthesis (TLS), in which specialized TLS polymerases bypass the DNA lesion with the help of monoubiquitinated proliferating cell nuclear antigen. Among all TLS polymerases (Pol η, Pol ι, Pol κ, REV1, Pol ζ, Pol µ, Pol λ, Pol ν, and Pol θ), DNA polymerase eta (Pol η) is well studied and majorly responsible for the bypass of cisplatin and UV-induced DNA damage. TLS polymerases contribute to chemotherapeutic drug-induced mutations as well as therapy resistance. Therefore, targeting these polymerases presents a novel therapeutic strategy to combat chemoresistance. Mounting evidence suggests that inhibition of Pol η may have multiple impacts on cancer therapy such as sensitizing cancer cells to chemotherapeutics, suppressing drug-induced mutagenesis, and inhibiting the development of secondary tumors. Herein, we provide a general introduction of Pol η and its clinical implications in blocking acquired drug resistance. In addition; this review addresses the existing gaps and challenges of Pol η mediated TLS mechanisms in human cells. A better understanding of the Pol η mediated TLS mechanism will not merely establish it as a potential pharmacological target but also open possibilities to identify novel drug targets for future therapy.


Assuntos
Antineoplásicos/uso terapêutico , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/tratamento farmacológico , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA