Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36139979

RESUMO

The rapid worldwide spread of antimicrobial resistance highlights the significant need for the development of innovative treatments to fight multidrug-resistant bacteria. This study describes the potent antimicrobial activity of the novel peptide OMN6 against a wide array of drug-resistant Acinetobacter baumannii clinical isolates. OMN6 prevented the growth of all tested isolates, regardless of any pre-existing resistance mechanisms. Moreover, in vitro serial-passaging studies demonstrated that no resistance developed against OMN6. Importantly, OMN6 was highly efficacious in treating animal models of lung and blood infections caused by multidrug-resistant A. baumannii. Taken together, these results point to OMN6 as a novel antimicrobial agent with the potential to treat life-threatening infections caused by multidrug-resistant A. baumannii avoiding resistance.

2.
Sci Rep ; 11(1): 6603, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758343

RESUMO

New antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Externa Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Proteínas Citotóxicas Formadoras de Poros/química , Engenharia de Proteínas , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA