Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
IEEE J Transl Eng Health Med ; 12: 448-456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765887

RESUMO

OBJECTIVE: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG. METHODS AND PROCEDURES: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. RESULTS: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen's kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process. CONCLUSION: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques. CLINICAL IMPACT: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.


Assuntos
Eletroencefalografia , Couro Cabeludo , Humanos , Eletroencefalografia/métodos , Idoso , Couro Cabeludo/fisiologia , Idoso de 80 Anos ou mais , Masculino , Feminino , Sono/fisiologia , Processamento de Sinais Assistido por Computador , Orelha/fisiologia , Aprendizado de Máquina , Polissonografia/métodos
2.
IEEE Open J Eng Med Biol ; 5: 148-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487098

RESUMO

The rapidly increasing prevalence of debilitating breathing disorders, such as chronic obstructive pulmonary disease (COPD), calls for a meaningful integration of artificial intelligence (AI) into respiratory healthcare. Deep learning techniques are "data hungry" whilst patient-based data is invariably expensive and time consuming to record. To this end, we introduce a novel COPD-simulator, a physical apparatus with an easy to replicate design which enables rapid and effective generation of a wide range of COPD-like data from healthy subjects, for enhanced training of deep learning frameworks. To ensure the faithfulness of our domain-aware COPD surrogates, the generated waveforms are examined through both flow waveforms and photoplethysmography (PPG) waveforms (as a proxy for intrathoracic pressure) in terms of duty cycle, sample entropy, FEV1/FVC ratios and flow-volume loops. The proposed simulator operates on healthy subjects and is able to generate FEV1/FVC obstruction ratios ranging from greater than 0.8 to less than 0.2, mirroring values that can observed in the full spectrum of real-world COPD. As a final stage of verification, a simple convolutional neural network is trained on surrogate data alone, and is used to accurately detect COPD in real-world patients. When training solely on surrogate data, and testing on real-world data, a comparison of true positive rate against false positive rate yields an area under the curve of 0.75, compared with 0.63 when training solely on real-world data.

3.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339594

RESUMO

The main purpose of this paper is to provide information on how to create a convolutional neural network (CNN) for extracting features from EEG signals. Our task was to understand the primary aspects of creating and fine-tuning CNNs for various application scenarios. We considered the characteristics of EEG signals, coupled with an exploration of various signal processing and data preparation techniques. These techniques include noise reduction, filtering, encoding, decoding, and dimension reduction, among others. In addition, we conduct an in-depth analysis of well-known CNN architectures, categorizing them into four distinct groups: standard implementation, recurrent convolutional, decoder architecture, and combined architecture. This paper further offers a comprehensive evaluation of these architectures, covering accuracy metrics, hyperparameters, and an appendix that contains a table outlining the parameters of commonly used CNN architectures for feature extraction from EEG signals.


Assuntos
Eletroencefalografia , Redes Neurais de Computação , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Benchmarking , Decoração de Interiores e Mobiliário
4.
IEEE Trans Biomed Eng ; PP2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285581

RESUMO

The Ear-ECG provides a continuous Lead I like electrocardiogram (ECG) by measuring the potential difference related to heart activity by electrodes which are embedded within earphones. However, the significant increase in wearability and comfort enabled by Ear-ECG is often accompanied by a degradation in signal quality - a common obstacle that is shared by the majority of wearable technologies. We aim to resolve this issue by introducing a Deep Matched Filter (Deep-MF) for the highly accurate detection of R-peaks in wearable ECG, thus enhancing the utility of Ear-ECG in real-world scenarios. The Deep-MF consists of an encoder stage (trained as part of an encoder-decoder module to reproduce ground truth ECG), and an R-peak classifier stage. Through its operation as a Matched Filter, the encoder section searches for matches with an ECG template pattern in the input signal, prior to filtering these matches with the subsequent convolutional layers and selecting peaks corresponding to the ground truth ECG. The so condensed latent representation of R-peak information is then fed into a simple R-peak classifier, of which the output provides precise R-peak locations. The proposed Deep Matched Filter is evaluated using leave-one-subject-out cross-validation over 36 subjects with an age range of 18-75, with the Deep-MF outperforming existing algorithms for R-peak detection in noisy ECG. The Deep-MF is benchmarked against a ground truth ECG, in the form of either chest-ECG or arm-ECG, via both R-peak recall and R-peak precision metrics. The Deep-MF achieves a median R-peak recall of 94.9% and a median precision of 91.2% across subjects when evaluated with leave-one-subject-out cross validation. Moreover, when evaluated across a range of thresholds, the Deep-MF achieves an area under the curve (AUC) value of 0.97. The interpretability of Deep-MF as a Matched Filter is further strengthened by the analysis of its response to partial initialisation with an ECG template. We demonstrate that the Deep Matched Filter algorithm not only retains the initialised ECG kernel structure during the training process, but also amplifies portions of the ECG which it deems most valuable - namely the P wave, and each aspect of the QRS complex. Overall, this Deep-Match framework serves as a valuable step forward for the real-world functionality of Ear-ECG and, through its interpretable operation, the acceptance of deep learning models in e-Health.

5.
R Soc Open Sci ; 11(1): 221620, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179073

RESUMO

The ear is well positioned to accommodate both brain and vital signs monitoring, via so-called hearable devices. Consequently, ear-based electroencephalography has recently garnered great interest. However, despite the considerable potential of hearable based cardiac monitoring, the biophysics and characteristic cardiac rhythm of ear-based electrocardiography (ECG) are not yet well understood. To this end, we map the cardiac potential on the ear through volume conductor modelling and measurements on multiple subjects. In addition, in order to demonstrate real-world feasibility of in-ear ECG, measurements are conducted throughout a long-time simulated driving task. As a means of evaluation, the correspondence between the cardiac rhythms obtained via the ear-based and standard Lead I measurements, with respect to the shape and timing of the cardiac rhythm, is verified through three measures of similarity: the Pearson correlation, and measures of amplitude and timing deviations. A high correspondence between the cardiac rhythms obtained via the ear-based and Lead I measurements is rigorously confirmed through agreement between simulation and measurement, while the real-world feasibility was conclusively demonstrated through efficacious cardiac rhythm monitoring during prolonged driving. This work opens new avenues for seamless, hearable-based cardiac monitoring that extends beyond heart rate detection to offer cardiac rhythm examination in the community.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38082712

RESUMO

This work aims to classify physiological states using heart rate variability (HRV) features extracted from electrocardiograms recorded in the ears (ear-ECG). The physiological states considered in this work are: (a) normal breathing, (b) controlled slow breathing, and (c) mental exercises. Since both (b) and (c) cause higher variance in heartbeat intervals, breathing-related features (SpO2 and mean breathing interval) from the ear Photoplethysmogram (ear-PPG) are used to facilitate classification. This work: 1) proposes a scheme that, after initialization, automatically extracts R-peaks from low signal-to-noise ratio ear-ECG; 2) verifies the feasibility of extracting meaningful HRV features from ear-ECG; 3) quantitatively compares several ear-ECG sites; and 4) discusses the benefits of combining ear-ECG and ear-PPG features.


Assuntos
Orelha , Fotopletismografia , Frequência Cardíaca/fisiologia , Respiração , Eletrocardiografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38083115

RESUMO

Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used to detect hypertension, estimate beat-by-beat ABP values, and even reconstruct the shape of the ABP. Overall, models presented in literature have shown good performance, but there is a gap between research and potential real-world use cases. Usually, models are trained and tested on data from the same dataset and same subjects, which may lead to overestimating their accuracy. In this paper: we compare cross-validation, where the test data are from the same dataset as training data, and external validation, where the model is tested on samples from a new dataset, on a regression model which predicts diastolic blood pressure from PPG features. The results show that, in the cross-validation, the predicted and the real values are linearly dependent, while in the external validation, the predicted values are not related to the real ones, but probably just through an average value.


Assuntos
Pressão Arterial , Fotopletismografia , Humanos , Pressão Sanguínea , Fotopletismografia/métodos , Determinação da Pressão Arterial/métodos , Aprendizado de Máquina
8.
Artigo em Inglês | MEDLINE | ID: mdl-38083340

RESUMO

Sleep disorders are a prevalent problem among older adults, yet obtaining an accurate and reliable assessment of sleep quality can be challenging. Traditional polysomnography (PSG) is the gold standard for sleep staging, but is obtrusive, expensive, and requires expert assistance. To this end, we propose a minimally invasive single-channel single ear-EEG automatic sleep staging method for older adults. The method employs features from the frequency, time, and structural complexity domains, which provide a robust classification of sleep stages from a standardised viscoelastic earpiece. Our method is verified on a dataset of older adults and achieves a kappa value of at least 0.61, indicating substantial agreement. This paves the way for a non-invasive, cost-effective, and portable alternative to traditional PSG for sleep staging.


Assuntos
Transtornos do Sono-Vigília , Sono , Humanos , Idoso , Polissonografia/métodos , Fases do Sono , Eletroencefalografia/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38083651

RESUMO

The success of deep learning methods has enabled many modern wearable health applications, but has also highlighted the critical caveat of their extremely data hungry nature. While the widely explored wrist and finger photoplethysmography (PPG) sites are less affected, given the large available databases, this issue is prohibitive to exploring the full potential of novel recording locations such as in-ear wearables. To this end, we assess the feasibility of transfer learning from finger PPG to in-ear PPG in the context of deep learning for respiratory monitoring. This is achieved by introducing an encoder-decoder framework which is set up to extract respiratory waveforms from PPG, whereby simultaneously recorded gold standard respiratory waveforms (capnography, impedance pneumography and air flow) are used as a training reference. Next, the data augmentation and training pipeline is examined for both training on finger PPG and the subsequent fine tuning on in-ear PPG. The results indicate that, through training on two large finger PPG data sets (95 subjects) and then retraining on our own small in-ear PPG data set (6 subjects), the model achieves lower and more consistent test error for the prediction of the respiratory waveforms, compared to training on the small in-ear data set alone. This conclusively demonstrates the feasibility of transfer learning from finger PPG to in-ear PPG, leading to better generalisation across a wide range of respiratory rates.


Assuntos
Dedos , Fotopletismografia , Humanos , Fotopletismografia/métodos , Estudos de Viabilidade , Monitorização Fisiológica , Aprendizado de Máquina
10.
Artigo em Inglês | MEDLINE | ID: mdl-38083781

RESUMO

Accurate pulse-oximeter readings are critical for clinical decisions, especially when arterial blood-gas tests - the gold standard for determining oxygen saturation levels - are not available, such as when determining COVID-19 severity. Several studies demonstrate that pulse oxygen saturation estimated from photoplethysmography (PPG) introduces a racial bias due to the more profound scattering of light in subjects with darker skin due to the increased presence of melanin. This leads to an overestimation of blood oxygen saturation in those with darker skin that is increased for low blood oxygen levels and can result in a patient not receiving potentially life-saving supplemental oxygen. This racial bias has been comprehensively studied in conventional finger pulse oximetry but in other less commonly used measurement sites, such as in-ear pulse oximetry, it remains unexplored. Different measurement sites can have thinner epidermis compared with the finger and lower exposure to sunlight (such as is the case with the ear canal), and we hypothesise that this could reduce the bias introduced by skin tone on pulse oximetry. To this end, we compute SpO2 in different body locations, during rest and breath-holds, and compare with the index finger. The study involves a participant pool covering 6-pigmentation categories from Fitzpatrick's Skin Pigmentation scale. These preliminary results indicate that locations characterized by cartilaginous highly vascularized tissues may be less prone to the influence of melanin and pigmentation in the estimation of SpO2, paving the way for the development of non-discriminatory pulse oximetry devices.


Assuntos
Racismo , Pigmentação da Pele , Humanos , Melaninas , Oximetria/métodos , Oxigênio
11.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687975

RESUMO

At present, a medium-level microcontroller is capable of performing edge computing and can handle the computation of neural network kernel functions. This makes it possible to implement a complete end-to-end solution incorporating signal acquisition, digital signal processing, and machine learning for the classification of cardiac arrhythmias on a small wearable device. In this work, we describe the design and implementation of several classifiers for atrial fibrillation detection on a general-purpose ARM Cortex-M4 microcontroller. We used the CMSIS-DSP library, which supports Naïve Bayes and Support Vector Machine classifiers, with different kernel functions. We also developed Python scripts to automatically transfer the Python model (trained in Scikit-learn) to the C environment. To train and evaluate the models, we used part of the data from the PhysioNet/Computing in Cardiology Challenge 2020 and performed simple classification of atrial fibrillation based on heart-rate irregularity. The performance of the classifiers was tested on a general-purpose ARM Cortex-M4 microcontroller (STM32WB55RG). Our study reveals that among the tested classifiers, the SVM classifier with RBF kernel function achieves the highest accuracy of 96.9%, sensitivity of 98.4%, and specificity of 95.8%. The execution time of this classifier was 720 µs per recording. We also discuss the advantages of moving computing tasks to edge devices, including increased power efficiency of the system, improved patient data privacy and security, and reduced overall system operation costs. In addition, we highlight a problem with false-positive detection and unclear significance of device-detected atrial fibrillation.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Teorema de Bayes , Algoritmos , Frequência Cardíaca , Redes Neurais de Computação
12.
Neural Comput ; : 1-26, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432867

RESUMO

Modern data analytics applications are increasingly characterized by exceedingly large and multidimensional data sources. This represents a challenge for traditional machine learning models, as the number of model parameters needed to process such data grows exponentially with the data dimensions, an effect known as the curse of dimensionality. Recently, tensor decomposition (TD) techniques have shown promising results in reducing the computational costs associated with large-dimensional models while achieving comparable performance. However, such tensor models are often unable to incorporate the underlying domain knowledge when compressing high-dimensional models. To this end, we introduce a novel graph-regularized tensor regression (GRTR) framework, whereby domain knowledge about intramodal relations is incorporated into the model in the form of a graph Laplacian matrix. This is then used as a regularization tool to promote a physically meaningful structure within the model parameters. By virtue of tensor algebra, the proposed framework is shown to be fully interpretable, both coefficient-wise and dimension-wise. The GRTR model is validated in a multiway regression setting and compared against competing models and is shown to achieve improved performance at reduced computational costs. Detailed visualizations are provided to help readers gain an intuitive understanding of the employed tensor operations.

13.
Physiol Meas ; 44(11)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494945

RESUMO

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Monitores de Aptidão Física , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia
14.
PLoS One ; 18(7): e0286952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37490491

RESUMO

Duplex ultrasound (DUS) is the most widely used method for surveillance of arteriovenous fistulae (AVF) created for dialysis. However, DUS is poor at predicting AVF outcomes and there is a need for novel methods that can more accurately evaluate multidirectional AVF flow. In this study we aimed to evaluate the feasibility of detecting AVF stenosis using a novel method combining tensor-decomposition of B-mode ultrasound cine loops (videos) of blood flow and machine learning classification. Classification of stenosis was based on the DUS assessment of blood flow volume, vessel diameter size, flow velocity, and spectral waveform features. Real-time B-mode cine loops of the arterial inflow, anastomosis, and venous outflow of the AVFs were analysed. Tensor decompositions were computed from both the 'full-frame' (whole-image) videos and 'cropped' videos (to include areas of blood flow only). The resulting output were labelled for the presence of stenosis, as per the DUS findings, and used as a set of features for classification using a Long Short-Term Memory (LSTM) neural network. A total of 61 out of 66 available videos were used for analysis. The whole-image classifier failed to beat random guessing, achieving a mean area under the receiver operating characteristics (AUROC) value of 0.49 (CI 0.48 to 0.50). In contrast, the 'cropped' video classifier performed better with a mean AUROC of 0.82 (CI 0.66 to 0.96), showing promising predictive power despite the small size of the dataset. The combined application of tensor decomposition and machine learning are promising for the detection of AVF stenosis and warrant further investigation.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Diálise Renal/métodos , Constrição Patológica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Aprendizado de Máquina
15.
Artigo em Inglês | MEDLINE | ID: mdl-37368807

RESUMO

Graph neural networks (GNNs) tend to suffer from high computation costs due to the exponentially increasing scale of graph data and a large number of model parameters, which restricts their utility in practical applications. To this end, some recent works focus on sparsifying GNNs (including graph structures and model parameters) with the lottery ticket hypothesis (LTH) to reduce inference costs while maintaining performance levels. However, the LTH-based methods suffer from two major drawbacks: 1) they require exhaustive and iterative training of dense models, resulting in an extremely large training computation cost, and 2) they only trim graph structures and model parameters but ignore the node feature dimension, where vast redundancy exists. To overcome the above limitations, we propose a comprehensive graph gradual pruning framework termed CGP. This is achieved by designing a during-training graph pruning paradigm to dynamically prune GNNs within one training process. Unlike LTH-based methods, the proposed CGP approach requires no retraining, which significantly reduces the computation costs. Furthermore, we design a cosparsifying strategy to comprehensively trim all the three core elements of GNNs: graph structures, node features, and model parameters. Next, to refine the pruning operation, we introduce a regrowth process into our CGP framework, to reestablish the pruned but important connections. The proposed CGP is evaluated over a node classification task across six GNN architectures, including shallow models graph convolutional network (GCN) and graph attention network (GAT), shallow-but-deep-propagation models simple graph convolution (SGC) and approximate personalized propagation of neural predictions (APPNP), and deep models GCN via initial residual and identity mapping (GCNII) and residual GCN (ResGCN), on a total of 14 real-world graph datasets, including large-scale graph datasets from the challenging Open Graph Benchmark (OGB). Experiments reveal that the proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of the existing methods.

16.
Cardiovasc Digit Health J ; 4(2): 60-67, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37101944

RESUMO

Background: Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachycardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the invasive electrophysiology (EP) study as the gold standard. Methods: We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm. Results: The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sections of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves. Conclusion: We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.

17.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992029

RESUMO

Monitoring diabetes saves lives. To this end, we introduce a novel, unobtrusive, and readily deployable in-ear device for the continuous and non-invasive measurement of blood glucose levels (BGLs). The device is equipped with a low-cost commercially available pulse oximeter whose infrared wavelength (880 nm) is used for the acquisition of photoplethysmography (PPG). For rigor, we considered a full range of diabetic conditions (non-diabetic, pre-diabetic, type I diabetic, and type II diabetic). Recordings spanned nine different days, starting in the morning while fasting, up to a minimum of a two-hour period after eating a carbohydrate-rich breakfast. The BGLs from PPG were estimated using a suite of regression-based machine learning models, which were trained on characteristic features of PPG cycles pertaining to high and low BGLs. The analysis shows that, as desired, an average of 82% of the BGLs estimated from PPG lie in region A of the Clarke error grid (CEG) plot, with 100% of the estimated BGLs in the clinically acceptable CEG regions A and B. These results demonstrate the potential of the ear canal as a site for non-invasive blood glucose monitoring.


Assuntos
Glicemia , Fotopletismografia , Fotopletismografia/métodos , Automonitorização da Glicemia , Oximetria/métodos , Oxigênio
18.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 2246-2263, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35259097

RESUMO

The integral probability metric (IPM) equips generative adversarial nets (GANs) with the necessary theoretical support for comparing statistical moments in an embedded domain of the critic, while stabilising their training and mitigating the mode collapse issues. For enhanced intuition and physical insight, we introduce a generalisation of IPM-GANs which operates by directly comparing probability distributions rather than their moments. This is achieved through characteristic functions (CFs), a powerful tool that uniquely comprises all information about any general distribution. For rigour, we first theoretically prove the ability of the CF loss to compare probability distributions, and proceed to establish the physical meaning of the phase and amplitude of CFs. An optimal sampling strategy is then developed to calculate the CFs, and an equivalence between the embedded and data domains is proved under the reciprocal theory. This makes it possible to seamlessly combine IPM-GAN with an auto-encoder structure by an advanced anchor architecture, which adversarially learns a semantic low-dimensional manifold for both generation and reconstruction. This efficient reciprocal CF GAN (RCF-GAN) structure, uses only two modules and a simple training strategy to achieve the state-of-the-art bi-directional generation. Experiments demonstrate the superior performance of RCF-GAN on both regular (images) and irregular (graph) domains.

19.
IEEE Trans Neural Netw Learn Syst ; 34(12): 11006-11012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35353706

RESUMO

Modern probabilistic learning systems mainly assume symmetric distributions, however, real-world data typically obey skewed distributions and are thus not adequately modeled through symmetric distributions. To address this issue, a generalization of symmetric distributions called elliptical distributions are increasingly used, together with further improvements based on skewed elliptical distributions. However, existing approaches are either hard to estimate or have complicated and abstract representations. To this end, we propose a novel approach based on the von-Mises-Fisher (vMF) distribution to obtain an explicit and simple probability representation of skewed elliptical distributions. The analysis shows that this not only allows us to design and implement nonsymmetric learning systems but also provides a physically meaningful and intuitive way of generalizing skewed distributions. For rigor, the proposed framework is proven to share important and desirable properties with its symmetric counterpart. The proposed vMF distribution is demonstrated to be easy to generate and stable to estimate, both theoretically and through examples.

20.
Neural Netw ; 158: 83-88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442375

RESUMO

A class of doubly stochastic graph shift operators (GSO) is proposed, which is shown to exhibit: (i) lower and upper L2-boundedness for locally stationary random graph signals, (ii) L2-isometry for i.i.d. random graph signals with the asymptotic increase in the incoming neighbourhood size of vertices, and (iii) preservation of the mean of any graph signal - all prerequisites for reliable graph neural networks. These properties are obtained through a statistical consistency analysis of the proposed graph shift operator, and by exploiting the dual role of the doubly stochastic GSO as a Markov (diffusion) matrix and as an unbiased expectation operator. For generality, we consider directed graphs which exhibit asymmetric connectivity matrices. The proposed approach is validated through an example on the estimation of a vector field.


Assuntos
Algoritmos , Redes Neurais de Computação , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA