RESUMO
Hydroxypropyl ß-cyclodextrin (HPßCD) based polymeric nanobeads containing voriconazole (VRC) were fabricated by free radical polymerization using N, N'-methylene bisacrylamide (MBA) as a cross-linker, 2-acrylamide-2-methylpropane sulfonic acid (AMPS) as monomer and ammonium persulfate (APS) as reaction promoter. Optimized formulation (CDN5) had a particle size of 320 nm with a zeta potential of -35.5 mV and 87% EE. Scanning electron microscopy (SEM) depicted porous and non-spherical shaped beads. No evidence of chemical interaction was evident in FT-IR studies, whereas distinctive high-intensity VRC peaks were found superimposed in XRD. A stable polymeric network formation was evident in DSC studies owing to a lower breakdown in VRC loaded HPßCD in comparison to blank HPßCD. In vitro release studies showed 91 and 92% drug release for optimized formulation at pH 1.2 and 6.8, respectively, with first-order kinetics as the best-fit model and non-Fickian diffusion as the release mechanism. No evidence of toxicity was observed upon oral administration of HPßCD loaded VRC polymeric nanobeads owing to with cellular morphology of vital organs as observed in histopathology. Molecular docking indicates the amalgamation of the compounds highlighting the hydrophobic patching mediated by nanogel formulation. It can be concluded that the development of polymeric nanobeads can be a promising tool to enhance the solubility and efficacy of hydrophobic drugs such as VRC besides decreased toxicity and for effective management of fungal infections.
RESUMO
Type 2 diabetes mellitus has been a major health issue with increasing morbidity and mortality due to macrovascular and microvascular complications. The urgent need for improved methods to control hyperglycemic complications reiterates the development of innovative preventive and therapeutic treatment strategies. In this perspective, xanthone compounds in the pericarp of the mangosteen fruit, especially α-mangostin (MGN), have been recognized to restore damaged pancreatic ß-cells for optimal insulin release. Therefore, taking advantage of the robust use of nanotechnology for targeted drug delivery, we herein report the preparation of MGN loaded nanosponges for anti-diabetic therapeutic applications. The nanosponges were prepared by quasi-emulsion solvent evaporation method. Physico-chemical characterization of formulated nanosponges with satisfactory outcomes was performed with Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Zeta potential, hydrodynamic diameter, entrapment efficiency, drug release properties, and stability studies at stress conditions were also tested. Molecular docking analysis revealed significant interactions of α-glucosidase and MGN in a protein-ligand complex. The maximum inhibition by nanosponges against α-glucosidase was observed to be 0.9352 ± 0.0856 µM, 3.11-fold higher than acarbose. In vivo studies were conducted on diabetic rats and plasma glucose levels were estimated by HPLC. Collectively, our findings suggest that MGN-loaded nanosponges may be beneficial in the treatment of diabetes since they prolong the antidiabetic response in plasma and improve patient compliance by slowly releasing MGN and requiring less frequent doses, respectively.