RESUMO
IL-10 is a potent anti-inflammatory cytokine capable of suppressing a number of proinflammatory signals associated with intestinal inflammatory diseases, such as ulcerative colitis and Crohn's disease. Clinical use of human IL-10 (hIL-10) has been limited by anemia and thrombocytopenia following systemic injection, side effects that might be eliminated by a gut-restricted distribution. We have identified a transcytosis pathway used by cholix, an exotoxin secreted by nonpandemic forms of the intestinal pathogen Vibrio cholerae A nontoxic fragment of the first 386 aa of cholix was genetically fused to hIL-10 to produce recombinant AMT-101. In vitro and in vivo characterization of AMT-101 showed it to efficiently cross healthy human intestinal epithelium (SMI-100) by a vesicular transcytosis process, activate hIL-10 receptors in an engineered U2OS osteosarcoma cell line, and increase cellular phospho-STAT3 levels in J774.2 mouse macrophage cells. AMT-101 was taken up by inflamed intestinal mucosa and activated pSTAT3 in the lamina propria with limited systemic distribution. AMT-101 administered to healthy mice by oral gavage or to cynomolgus monkeys (nonhuman primates) by colonic spray increased circulating levels of IL-1R antagonist (IL-1Ra). Oral gavage of AMT-101 in two mouse models of induced colitis prevented associated pathological events and plasma cytokine changes. Overall, these studies suggest that AMT-101 can efficiently overcome the epithelial barrier to focus biologically active IL-10 to the intestinal lamina propria.
Assuntos
Colite/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Animais , Células Cultivadas , Colo/metabolismo , Doença de Crohn/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Macaca fascicularis , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Mucosa/metabolismo , Ratos , Ratos Wistar , Transcitose/fisiologiaRESUMO
Cholix (Chx) is expressed by the intestinal pathogen Vibrio cholerae as a single chain of 634 amino acids (~70.7 kDa protein) that folds into three distinct domains, with elements of the second and third domains being involved in accessing the cytoplasm of nonpolarized cells and inciting cell death via ADP-ribosylation of elongation factor 2, respectively. In order to reach nonpolarized cells within the intestinal lamina propria, however, Chx must cross the polarized epithelial barrier in an intact form. Here, we provide invitro and invivo demonstrations that a nontoxic Chx transports across intestinal epithelium via a vesicular trafficking pathway that rapidly achieves vesicular apical to basal (AâB) transcytosis and avoids routing to lysosomes. Specifically, Chx traffics in apical endocytic Rab7+ vesicles and in basal exocytic Rab11+ vesicles with a transition between these domains occurring in the ER-Golgi intermediate compartment (ERGIC) through interactions with the lectin mannose-binding protein 1 (LMAN1) protein that undergoes an intracellular re-distribution that coincides with the re-organization of COPI+ and COPII+ vesicular structures. Truncation studies demonstrated that domain I of Chx alone was sufficient to efficiently complete AâB transcytosis and capable of ferrying genetically conjoined human growth hormone (hGH). These studies provide evidence for a pathophysiological strategy where native Chx exotoxin secreted in the intestinal lumen by nonpandemic V. cholerae can reach nonpolarized cells within the lamina propria in an intact form by using a nondestructive pathway to cross in the intestinal epithelial that appears useful for oral delivery of biopharmaceuticals.One-Sentence Summary: Elements within the first domain of the Cholix exotoxin protein are essential and sufficient for the apical to basal transcytosis of this Vibrio cholerae-derived virulence factor across polarized intestinal epithelial cells.
Assuntos
Fatores de Ribosilação do ADP/química , Toxinas Bacterianas/química , Domínios Proteicos/fisiologia , Transcitose/fisiologia , HumanosRESUMO
Duchenne muscular dystrophy is a lethal genetic defect that is associated with the absence of dystrophin protein. Lack of dystrophin protein completely abolishes muscular nitric-oxide synthase (NOS) function as a regulator of blood flow during muscle contraction. In normal muscles, nNOS function is ensured by its localization at the sarcolemma through an interaction of its PDZ domain with dystrophin spectrin-like repeats R16 and R17. Early studies suggested that repeat R17 is the primary site of interaction but ignored the involved nNOS residues, and the R17 binding site has not been described at an atomic level. In this study, we characterized the specific amino acids involved in the binding site of nNOS-PDZ with dystrophin R16-17 using combined experimental biochemical and structural in silico approaches. First, 32 alanine-scanning mutagenesis variants of dystrophin R16-17 indicated the regions where mutagenesis modified the affinity of the dystrophin interaction with the nNOS-PDZ. Second, using small angle x-ray scattering-based models of dystrophin R16-17 and molecular docking methods, we generated atomic models of the dystrophin R16-17·nNOS-PDZ complex that correlated well with the alanine scanning identified regions of dystrophin. The structural regions constituting the dystrophin interaction surface involve the A/B loop and the N-terminal end of helix B of repeat R16 and the N-terminal end of helix A' and a small fraction of helix B' and a large part of the helix C' of repeat R17. The interaction surface of nNOS-PDZ involves its main ß-sheet and its specific C-terminal ß-finger.
Assuntos
Distrofina/química , Óxido Nítrico Sintase Tipo I/química , Alanina/química , Sítios de Ligação , Biotinilação , Proteínas Associadas à Distrofina/química , Éxons , Humanos , Simulação de Dinâmica Molecular , Músculo Esquelético/enzimologia , Mutagênese , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Raios XRESUMO
We have studied the properties of a panel of proteins engineered to be end-products of envisioned exon skipping therapy by antisense oligonucleotides, AONs, directed at exon 51 applied to relevant dystrophin defects causing Duchenne muscular dystrophy, DMD. Exon skipping therapy is a leading therapeutic strategy being investigated for the treatment of this devastating genetic disease. AONs targeting exon 51 have progressed furthest in human clinical trials. Exon 51 skipping is applicable to a variety of dystrophin defects found in different patients. Due to the differences in original defect, the end result of the therapy will be different in each case. An open question is whether these differences will produce significant differences in the dystrophin protein so edited. In this study we have identified differences in the stability, structure and lipid binding properties of these end-product proteins produced by exon 51 skipping repair.