Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37086180

RESUMO

Metabolic syndrome is a worldwide health issue. Previous research has revealed that low-birth weight (LBW) swine fed a high-fat (HF) diet were susceptible to insulin resistance (IR) and developed a preferential intestinal lipid absorption, hypertriglyceridemia, and muscle steatosis. We hypothesized that fatty acid transporters such as CD36, FATP4, and FABP2 could potentially explain the development of these conditions. In addition, dairy-derived fatty acids have been shown to be valid biomarkers to assess dairy intake, which can be utilized to investigate muscle lipid deposition in LBW swine. The overall aim of this study was to delineate molecular transport candidates responsible for intestinal lipid absorption and muscle lipid deposition in LBW swine; and secondly to determine what dietary fatty acids might accumulate preferentially in pork muscle when consuming dairy products. At 5 weeks of age, normal birth weight (NBW) and LBW piglets were randomly assigned to three experimental diets: 1-chow diet, 2-HF diet, or 3-isocaloric HF diet supplemented with full fat dairy products. At 12 weeks of age, piglets were euthanized, and carcass, fasting plasma, biceps femoris and jejunum mucosal scrapings were collected. Results showed that HF-fed LBW swine exhibited early signs of IR (fasting glucose, P < 0.05; fasting insulin, P = 0.091; HOMA-IR, P = 0.086) compared with NBW-Chow, which were attenuated with increased dairy intake. Muscle samples from HF-fed LBW swine contained significantly more triglyceride compared to Chow-fed NBW swine (P < 0.05). Increased dairy intake significantly increased myristic acid (C14:0) and DPA (C22:5n3) relative to HF feeding alone (P < 0.05). All HF-fed LBW swine (regardless of dairy intake) exhibited an upregulation of CD36 expression (but not FABP2) compared with NBW littermates in both the small intestine and muscle (P < 0.05). Interestingly, increased dairy intake significantly increased the Canadian Lean Yield percentage in LBW swine fed an HF diet (P < 0.05). Findings from this study provide evidence on the mechanistic pathway of intestinal and muscle lipid metabolism in an innovative LBW swine model. We have also revealed that increasing dairy intake can enhance the incorporation of dietary long-chain polyunsaturated fatty acids into pork, as well as increasing the predicted lean yield of the carcass.


Metabolic syndrome affects millions of people worldwide, and large animal models represent a unique opportunity for research advancement. Intensive swine production can induce low-birth weight (LBW) litters. We have developed an innovative LBW swine model to investigate insulin resistance and dyslipidemia. We present evidence to explain how LBW swine can upregulate lipid intestinal absorption as well as preferentially increase pork marbling. We have also identified a potential added value approach to increase healthy fatty acids in pork and/or increase the carcass lean yield in LBW swine.


Assuntos
Resistência à Insulina , Doenças dos Suínos , Suínos , Animais , Peso ao Nascer/fisiologia , Ácidos Graxos/metabolismo , Regulação para Cima , Canadá , Músculos/metabolismo , Dieta Hiperlipídica , Resistência à Insulina/fisiologia , Doenças dos Suínos/metabolismo
5.
Eur J Nutr ; 62(2): 699-711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36197467

RESUMO

PURPOSE: To understand the effects of consuming high-fat and low-fat dairy products on postprandial cardiometabolic risk factors and intestinal immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance. METHODS: LBW piglets were randomized to consume one of the 3 experimental high fat diets and were fed for a total of 7 weeks: (1) Control high fat (LBW-CHF), (2) CHF diet supplemented with 3 servings of high-fat dairy (LBW-HFDairy) and (3) CHF diet supplemented with 3 servings of low-fat dairy (LBW-LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). At 11 weeks of age, all piglets underwent an established modified oral glucose and fat tolerance test. At 12 weeks of age, piglets were euthanized and ex vivo cytokine production by cells isolated from mesenteric lymph node (MLN) stimulated with mitogens was assessed. RESULTS: Dairy consumption did not modulate postprandial plasma lipid, inflammatory markers and glucose concentrations. A lower production of IL-2 and TNF-α after pokeweed mitogen (PWM) stimulation was observed in LBW-CHF vs NBW-Chow (P < 0.05), suggesting impaired MLN T cell function. While feeding high-fat dairy had minimal effects, feeding low-fat dairy significantly improved the production of IL-2 and TNF-α after PWM stimulation (P < 0.05). CONCLUSIONS: Irrespective of fat content, dairy had a neutral effect on postprandial cardiometabolic risk factors. Low-fat dairy products improved intestinal T cell function to a greater extent than high-fat dairy in this swine model of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Animais , Peso ao Nascer , Dieta com Restrição de Gorduras , Glucose , Imunidade , Resistência à Insulina/fisiologia , Interleucina-2 , Suínos , Fator de Necrose Tumoral alfa
6.
Front Nutr ; 9: 923120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782930

RESUMO

Although dairy intake has been shown to have a neutral or some beneficial effect on major cardiometabolic risk factors, the impact of dairy, and especially dairy fat, on immune function remains to be investigated. To understand the effect of consuming dairy fat on cardiometabolic risk factors and immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance to compare high-fat and low-fat dairy products to a control high-fat diet (CHF). LBW piglets were randomized to consume one of the 3 experimental HF diets: (1) CHF, (2) CHF diet supplemented with 3 servings/day of high-fat dairy (HFDairy) and (3) CHF diet supplemented with 3 servings/day of low-fat dairy (LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). A total of 35 pigs completed the study and were fed for a total of 7 weeks, including 1 week of CHF transition diet. At 12 weeks of age, piglets were euthanized. Fasting blood and tissue samples were collected. Ex vivo cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with pokeweed (PWM), phytohemagglutinin (PHA) and phorbol myristate acetate-ionomycin (PMA-I) were assessed. As expected, LBW-CHF piglets showed early signs of insulin resistance (HOMA-IR, P model = 0.08). Feeding high-fat dairy products improved fasting plasma glucose concentrations more than low-fat dairy compared to LBW-CHF (P < 0.05). Irrespective of fat content, dairy consumption had neutral effect on fasting lipid profile. We have also observed lower production of IL-2 after PWM and PHA stimulation as well as lower production of TNF-α and IFN-γ after PWM stimulation in LBW-CHF than in NBW-Chow (all, P < 0.05), suggesting impaired T cell and antigen presenting cell function. While feeding high-fat dairy had minimal effect on immune function, feeding low-fat dairy significantly improved the production of IL-2, TNF-α and IFN-γ after PWM stimulation, IL-2 and IFN-γ after PHA stimulation as well as TNF-α after PMA-I stimulation compared to LBW-CHF (all, P < 0.05). These data provide novel insights into the role of dairy consumption in counteracting some obesity-related cardiometabolic and immune perturbations.

7.
Front Nutr ; 9: 840209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252310

RESUMO

Obesity has emerged as a leading global health concern. It is characterized by chronic low-grade inflammation, which impairs insulin signaling, lipid metabolism and immune function. Recent findings from animal and clinical studies have begun to elucidate the underlying mechanisms of immune dysfunction seen in the context of obesity. Here, we provide a brief review on the current understanding of the interplay between obesity, dyslipidemia and immunity. We also emphasize the advantages and shortcomings of numerous applicable research models including rodents and large animal swine that aim at unraveling the molecular basis of disease and clinical manifestations. Although there is no perfect model to answer all questions at once, they are often used to complement each other. Finally, we highlight some emerging nutritional strategies to improve immune function in the context of obesity with a particular focus on choline and foods that contains high amounts of choline.

8.
Microorganisms ; 9(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34946118

RESUMO

High-fat diets (HFD) have been shown to induce substantial shifts in intestinal microbial community composition and activity which are associated with adverse metabolic outcomes. Furthermore, changes in microbial composition are affected by fatty acid composition; saturated, monounsaturated (MUFA), and industrial trans fats (iTFA) adversely affect microbial diversity while polyunsaturated fats (PUFA) have been shown to have neutral effects. The effects of naturally occurring trans fats on gut microbial composition are unknown. Vaccenic acid (VA) is the most abundant naturally occurring trans fat (abundant in meat and dairy), can be elevated by altering a cow's diet, and has been shown to have hypolipidemic effects. The aim of this study was to determine how variations of VA content in beef fat affect gut microbial composition, insulin resistance, and lipid metabolism in pigs. Low birth weight (LBW) and control pigs were fed a control or high-fat, high-carbohydrate (HFHC) diet supplemented with beef fat containing either high or low VA levels for 7 weeks. An adapted modified oral glucose tolerance test and fat challenge test were performed at 9 weeks of age following implantation of jugular catheters. Impacts on microbial composition were assessed using 16S rRNA gene amplicon sequencing. The HFHC diet containing beef fat rich in VA had a mild insulin sensitizing effect (p < 0.05, slope of curve), increased plasma HDL cholesterol (p < 0.05, +28%), reduced postprandial plasma TG (p < 0.05), and showed protection from HFHC-induced changes to gut microbial composition in LBW pigs as compared to HFHC diet containing standard beef fat. This is the first study to show effects of natural trans fats on gut dysbiosis; further studies are needed to elucidate mechanisms.

9.
FASEB J ; 33(8): 9250-9262, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31144992

RESUMO

Low birth weight (LBW) and postnatal nutrition are risk factors for adult metabolic diseases. However, the interactions between LBW, diet, and intestinal lipid absorption and secretion leading to adult metabolic disease remain unclear. The current study determined the impact of LBW on intestinal lipid and carbohydrate metabolism under both control and Western diet (high fat, high fructose, and cholesterol) conditions in 5-wk-old LBW and normal birth weight (NBW) Landrace-Large White × Duroc pigs. A 2-step modified oral glucose and fat challenge test was performed. Mesenteric lymph, jejunal mucosal scrapings, and cecal digesta samples were also collected. LBW offspring were lower in weight and gained less weight per day. LBW pigs on either control or Western diets displayed increased triglyceride (TG) secretion into lymph (P = 0.0135). Western diet-fed LBW pigs developed fasting (P = 0.03) and postprandial (P < 0.05) hypertriglyceridemia, muscle steatosis (P = 0.0072), had higher insulin excursion (P < 0.01), increased jejunal stearoyl-CoA desaturase 1 mRNA and increased hepatic fibrosis (P = 0.0017) compared with NBW piglets. Gut microbiota showed significant dysbiosis on Western diet independent of birth weight. In conclusion, LBW pigs fed a Western diet specifically up-regulate TG absorption and secretion, develop dyslipidemia, muscular steatosis, and display early signs of insulin resistance. Interestingly, this study does not provide evidence of altered intestinal microbiome in LBW pigs contributing to increased severity of metabolic diseases.-Fontaine, M. A., Diane, A., Singh, V. P., Mangat, R., Krysa, J. A., Nelson, R., Willing, B. P., Proctor, S. D. Low birth weight causes insulin resistance and aberrant intestinal lipid metabolism independent of microbiota abundance in Landrace-Large White pigs.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Microbiota/fisiologia , Animais , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Microbiota/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
10.
FASEB J ; 32(3): 1602-1612, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29183962

RESUMO

The intestine is involved in whole-body lipid and cholesterol homeostasis and secretes lipoproteins containing apolipoprotein (Apo)B48 and discrete ApoA-I into the mesenteric lymph. The lymphatic system has been proposed to have a significant role in the reverse cholesterol transport pathway associated with HDL-ApoA-I. In conditions of insulin resistance (IR), there is intestinal overproduction of chylomicrons containing ApoB48; however, there is limited data on the intestinal synthesis and secretion of HDL-ApoA-I. microRNA (miR)-223 has been shown to regulate peripheral HDL metabolism and may impact intestinal-derived HDL. Niacin (nicotinic acid; vitamin B3) is known to regulate lipid metabolism, but the role of niacin in modulating intestinal lipid and lipoprotein (ApoB48 and ApoA-I) metabolism is unknown. The aim of this study was to determine the secretion of intestinal lymphatic HDL-ApoA-I and the effect of dietary intervention with niacin on these pathways in a rodent model of IR. HDL was isolated from intestinal mesenteric lymph by density ultracentrifugation, and subsequent HDL miR analysis was developed in collaboration with Exiqon Services. Insulin-resistant rodents were fed chow or chow with niacin (1% w/w) for 6 wk. Intestinal lymph HDL-ApoA-I and miR-223 expression were lower by at least 45 and 60%, respectively, and lymph HDL was associated with 85% higher triglyceride (TG) content in IR compared to non-IR control group. Niacin was found to increase secretion of lymph HDL and miR-223 by at least 50-60% and to deplete the TGs associated with HDL compared with the nontreated IR group. Niacin significantly increased peroxisome proliferator-activating nuclear receptor α and carnitine palmitoyltransferase I α mRNA and annulled Tnf-α mRNA expression in intestinal (jejunal) explants. Altered intestinal lymphatic HDL-ApoA-I and miR-223 metabolism in IR and modulation by niacin may provide insight into the intestinal-mediated regulation of the reverse cholesterol transport pathway.-Mangat, R., Borthwick, F., Haase, T., Jacome, M., Nelson, R., Kontush, A., Vine, D. F., Proctor, S. D. Intestinal lymphatic HDL miR-223 and ApoA-I are reduced during insulin resistance and restored with niacin.


Assuntos
Apolipoproteína A-I/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina/etnologia , Mucosa Intestinal/metabolismo , Lipoproteínas HDL/biossíntese , Linfonodos/metabolismo , MicroRNAs/biossíntese , Niacina/farmacologia , Animais , Apolipoproteína A-I/genética , Lipoproteínas HDL/genética , Masculino , Mesentério/metabolismo , Camundongos , Camundongos Transgênicos , MicroRNAs/genética
11.
Front Nutr ; 3: 44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777929

RESUMO

Obesity and its metabolic complications have emerged as the epidemic of the new millennia. The use of obese rodent models continues to be a productive component of efforts to understand the concomitant metabolic complications of this disease. In 1978, the JCR:LA-cp rat model was developed with an autosomal recessive corpulent (cp) trait resulting from a premature stop codon in the extracellular domain of the leptin receptor. Rats that are heterozygous for the cp trait are lean-prone, while those that are homozygous (cp/cp) spontaneously display the pathophysiology of obesity as well as a metabolic syndrome (MetS)-like phenotype. Over the years, there have been formidable scientific contributions that have originated from this rat model, much of which has been reviewed extensively up to 2008. The premise of these earlier studies focused on characterizing the pathophysiology of MetS-like phenotype that was spontaneously apparent in this model. The purpose of this review is to highlight areas of recent advancement made possible by this model including; emerging appreciation of the "thrifty gene" hypothesis in the context of obesity, the concept of how chronic inflammation may drive obesogenesis, the impact of acute forms of inflammation to the brain and periphery during chronic obesity, the role of dysfunctional insulin metabolism on lipid metabolism and vascular damage, and the mechanistic basis for altered vascular function as well as novel parallels between the human condition and the female JCR:LA-cp rat as a model for polycystic ovary disease (PCOS).

12.
J Vis Exp ; (109)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-27023826

RESUMO

Catheterization of the intestinal lymph trunk in neonatal pigs is a technique allowing for the long-term collection of large quantities of intestinal (central) efferent lymph. Importantly, the collection of central lymph from the intestine enables researchers to study both the mechanisms and lipid constitutes associated with lipid metabolism, intestinal inflammation and cancer metastasis, as well as cells involved in immune function and immunosurveillance. A ventral mid-line surgical approach permits excellent surgical exposure to the cranial abdomen and relatively easy access to the intestinal lymph trunk vessel that lies near the pancreas and the right ventral segment of the portal vein underneath the visceral aspect of the right liver lobe. The vessel is meticulously dissected and released from the surrounding fascia and then dilated with sutures allowing for insertion and subsequent securing of the catheter into the vessel. The catheter is exteriorized and approximately 1 L/24 hr of lymph is collected over a 7 day period. While this technique enables the collection of large quantities of central lymph over an extended period of time, the success depends on careful surgical dissection, tissue handling and close attention to proper surgical technique. This is particularly important with surgeries in young animals as the lymph vessels can easily tear, potentially leading to surgical and experimental failure. The video demonstrates an excellent surgical technique for the collection of intestinal lymph.


Assuntos
Cateterismo/métodos , Intestinos/cirurgia , Linfa , Sistema Linfático/cirurgia , Animais , Animais Recém-Nascidos , Humanos , Metabolismo dos Lipídeos , Suínos
13.
J Lipid Res ; 57(4): 638-49, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891736

RESUMO

Vaccenic acid (VA), the predominant ruminant-derivedtransfat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cprats were assigned to a control diet with or without VA (1% w/w),cis-9,trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), in the liver and visceral adipose tissue (VAT) relative to control diet (P< 0.001), but did not change AA in tissue PLs. There was no additive effect of combining VA+CLA on 2-AG relative to VA alone (P> 0.05). Interestingly, VA increased jejunal concentrations of anandamide and those of the noncannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to control diet (P< 0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase, as well as the mRNA expression of TNFα and interleukin 1ß (P< 0.05). The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of ECs and other noncannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Síndrome Metabólica/metabolismo , Ácidos Oleicos/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Células CACO-2 , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Intestinos/patologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Lipídeos de Membrana/metabolismo , Ácidos Oleicos/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
14.
PLoS One ; 11(1): e0145992, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731409

RESUMO

White adipocytes are known to function as endocrine organs by secreting a plethora of bioactive adipokines which can regulate cardiac function including the development of hypertrophy. We determined whether adipose tissue conditioned medium (ATCM) generated from the epididymal regions of normal rats can affect the hypertrophic response of cultured rat ventricular myocytes to endothelin-1 (ET-1) administration. Myocytes were treated with ET-1 (10 nM) for 24 hours in the absence or presence of increasing ATCM concentrations. ATCM supressed the hypertrophic response to ET-1 in a concentration-dependent manner, an effect enhanced by the leptin receptor antagonist and attenuated by an antibody against the adiponectin AdipoR1 receptor. Antihypertrophic effects were also observed with ATCM generated from perirenal-derived adipose tissue. However, this effect was absent in ATCM from adipose tissue harvested from corpulent JCR:LA-cp rats. Detailed analyses of adipokine content in ATCM from normal and corpulent rats revealed no differences in the majority of products assayed, although a significant increase in leptin concentrations concomitant with decreased adiponectin levels was observed, resulting in a 11 fold increase in the leptin to adiponectin ratio in ATCM from JCR:LA-cp. The antihypertrophic effect of ATCM was associated with increased phosphorylation of AMP-activated protein kinase (AMPK), an effect abrogated by the AdipoR1 antibody. Moreover, the antihypertrophic effect of ATCM was mimicked by an AMPK activator. There was no effect of ET-1 on mitogen-activated protein kinase (MAPK) activities 24 hour after its addition either in the presence or absence of ATCM. Our study suggests that adipose tissue from healthy subjects exerts antihypertrophic effects via an adiponectin-dependent pathway which is impaired in obesity, most likely due to adipocyte remodelling resulting in enhanced leptin and reduced adiponectin levels.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Cardiomegalia/metabolismo , Meios de Cultivo Condicionados/metabolismo , Endotelina-1/metabolismo , Leptina/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cardiomegalia/patologia , Células Cultivadas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Ratos Sprague-Dawley
15.
J Nutr Biochem ; 25(7): 692-701, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24775093

RESUMO

Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats.


Assuntos
Gorduras na Dieta/farmacologia , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ácidos Oleicos/farmacologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Laticínios , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos/farmacologia , Insulina/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Síndrome Metabólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/metabolismo , Ratos
17.
Atherosclerosis ; 232(1): 141-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24401228

RESUMO

OBJECTIVE: Statins are widely used for the treatment of hyperlipidemia to reduce cardiovascular disease (CVD) risk. Intriguingly, recent reports suggest that whilst statins are effective in reducing hepatic cholesterol synthesis, they in turn may up-regulate intestinal cholesterol absorption. The direct effects and/or mechanisms of this phenomenon remain largely unknown. The aim of this study was to investigate the potential for statins to increase intestinal lipid absorption and/or secretion in a rodent model of the metabolic syndrome (MetS). METHODS AND RESULTS: Mets JCR:LA-cp rats received a 1% cholesterol diet containing Simvastatin (0.01% w/w), for 8 weeks. Fasting and postprandial plasma biochemical profile was assessed using enzymatic assays and a modified apoB48 (chylomicron; CM) western blotting protocol. Statin treatment reduced fasting plasma TG (-49%), cholesterol (-24%) and postprandial plasma apoB48 (-58%). The intestinal secretion of lipids into mesenteric lymph was assessed using lymph fistulae procedures. Interestingly, MetS rats treated with statin secreted greater cholesterol (1.9-fold) and TG (1.5-fold) per apoB48 particle, into mesenteric lymph. This was shown to be as a result of simvastatin-induced increase in intestinal cholesterol absorption (31.5%). Experiments using in vivo inhibition of lipoprotein lipase (LPL; poloxamer-407) demonstrated statin treatment reduced hepatic cholesterol secretion (-49%), but significantly increased hepatic (73%) TG secretion in MetS rats. Statin treatment also increased the expression of genes involved in lipid synthesis (Hmgcr, Srebp1, Fas, Acc; 33-67%) and reduced those involved in efflux (Abca1, Abcg8; -36 to 73%) in enterocytes and liver of MetS rats versus untreated control. CONCLUSIONS: In a rodent model of MetS, statin treatment adversely up-regulates intestinal lipid secretion as a result of increased intestinal cholesterol absorption, and increases the intestinal expression of genes involved in lipid synthesis; effects which may confound clinical benefits to remnant dyslipidemia.


Assuntos
Anticolesterolemiantes/uso terapêutico , Lipídeos/sangue , Síndrome Metabólica/sangue , Sinvastatina/uso terapêutico , Regulação para Cima , Animais , Anticolesterolemiantes/sangue , Doenças Cardiovasculares/prevenção & controle , Colesterol/química , Colesterol/farmacocinética , Modelos Animais de Doenças , Dislipidemias/tratamento farmacológico , Privação de Alimentos , Regulação da Expressão Gênica , Hidrólise , Intestinos/efeitos dos fármacos , Lipase Lipoproteica/sangue , Masculino , Síndrome Metabólica/tratamento farmacológico , Período Pós-Prandial , Ratos , Sinvastatina/sangue , Triglicerídeos/sangue
18.
Atherosclerosis ; 222(2): 402-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22483015

RESUMO

OBJECTIVE: Low plasma high-density lipoprotein cholesterol (HDL-C) concentration is associated with the metabolic syndrome (MetS) and increased prevalence of cardiovascular disease (CVD). Animal and human studies report infusion of apolipoprotein A-1 (apoA-1) can reduce endothelial dysfunction, and/or induce regression of atherosclerosis. However, the direct mechanisms underlying the vascular benefits of either apoA-1 or HDL-C remain unclear. In this study, we assessed the ability of reconstituted HDL (rHDL) to improve vascular complications of MetS, including left ventricular (LV)-hypertrophy, arterial cholesterol deposition and myocardial lesion development. METHODS AND RESULTS: Obese insulin resistant (IR) JCR:LA-cp rats were infused with rHDL (0.4 mg/kg) over 3 days before assessing cardiac function (Echocardiography) at days 7 and 50 post-infusion, as well as haematoxylin and eosin staining of myocardial lesions at day 50. Acute ex vivo arterial cholesterol deposition was assessed with acute infusion of rHDL ex-vivo. Infusion of rHDL partially corrected abnormal diastolic compliance (18%; *p<0.05) and improved parameters of cardiac function in IR rats. Further, acute rHDL infusion in carotid vessels reduced remnant lipoprotein associated-cholesterol deposition (30-86%; **p<0.01) ex vivo in IR and male Wistar rats and reduced (41%; *p<0.05) the frequency of early-stage myocardial lesions in IR rats. CONCLUSION: Short-term infusion of rHDL may beneficially reduce chronic vascular sequelae of MetS, including temporary improvement in LV-dysfunction, acute reduction of acute arterial cholesterol deposition and the development of early-stage myocardial lesions in the JCR:LA-cp rat.


Assuntos
Apolipoproteína A-I/administração & dosagem , Artérias Carótidas/efeitos dos fármacos , Doenças das Artérias Carótidas/tratamento farmacológico , Colesterol/metabolismo , Resistência à Insulina , Lipoproteínas HDL/administração & dosagem , Síndrome Metabólica/tratamento farmacológico , Miocárdio/patologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Modelos Animais de Doenças , Ecocardiografia Doppler , Humanos , Infusões Parenterais , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Miocárdio/metabolismo , Obesidade/complicações , Ratos , Ratos Wistar , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
19.
J Am Heart Assoc ; 1(5): e003434, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23316299

RESUMO

BACKGROUND: Literature supports the "response-to-retention" hypothesis-that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. METHODS AND RESULTS: Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. CONCLUSIONS: Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS.


Assuntos
Anticolesterolemiantes/uso terapêutico , Artérias/metabolismo , Aterosclerose/fisiopatologia , Azetidinas/uso terapêutico , Biglicano/metabolismo , Colesterol/metabolismo , Resistência à Insulina/fisiologia , Lipoproteínas/metabolismo , Síndrome Metabólica/fisiopatologia , Animais , Aterosclerose/tratamento farmacológico , Ezetimiba , Masculino , Síndrome Metabólica/tratamento farmacológico , Ratos , Sinvastatina/uso terapêutico
20.
Br J Nutr ; 105(11): 1572-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21276281

RESUMO

There is increasing interest in the potential chronic beneficial effects of dietary n-3 PUFA on the metabolic syndrome (MetS) and associated cardiovascular complications. We have recently established that increased dietary n-3 PUFA has a profound acute benefit on fasting lipids and the postprandial pro-inflammatory response in the JCR:LA-cp rat, a model of the MetS. However, it is unclear to what extent chronic dietary n-3 PUFA intervention can modulate the progression of end-stage metabolic and vascular complications. The present study aimed to determine the chronic effects of dietary n-3 PUFA supplementation on fasting and non-fasting dyslipidaemia, insulin resistance and vascular complications in the JCR:LA-cp rodent model. JCR:LA-cp rats were fed an isoenergetic lipid-balanced diet supplemented with 5 % n-3 PUFA (w/w) of the total fat (fish oil-derived EPA/DHA) for 16 weeks. Fasting and non-fasting (postprandial) plasma lipid profile was assessed. Hepatic and adipose tissue was probed for the expression of lipogenic proteins (acyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and sterol regulatory element-binding protein-1 (SREBP-1)), while the activity of Jun N-terminal kinase (JNK) was assessed via Western blot to target phosphorylated JNK protein in primary enterocytes. The frequency of myocardial lesions was assessed by haematoxylin and eosin staining. Increased dietary n-3 PUFA improved both the fasting and postprandial lipid profiles (TAG, cholesterol and apoB48) in the JCR:LA-cp rat, potentially via the down-regulation of the hepatic or adipose tissue expression of lipogenic enzymes (ACC, FAS and SREBP-1). Rats fed the 5 % n-3 PUFA diet had lower (58·2 %; P < 0·01) enterocytic phosphorylated JNK protein and secreted less cholesterol (30 %; P < 0·05) into mesenteric lymph compared with the control. The chronic metabolic benefits of dietary n-3 PUFA may underlie the potential to reduce vascular complications during the MetS, including the observed reduction in the frequency (approximately 80 %) of late-stage 3 myocardial lesions.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dieta , Dislipidemias/dietoterapia , Ácidos Graxos Ômega-3/administração & dosagem , Síndrome Metabólica/dietoterapia , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , Dislipidemias/sangue , Ingestão de Alimentos/efeitos dos fármacos , Enterócitos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Jejuno/citologia , Lipídeos/sangue , Linfa/química , Masculino , Miocárdio/patologia , Obesidade/genética , Período Pós-Prandial , Distribuição Aleatória , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA